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Abstract  

Although Parkinson Disease was described a long time ago by James Parkinson and 

several biomarkers were used to predict the symptoms of PD, there is no accepted tool to 

distinguish the initial stages of this pathology. The present hypothesis discusses the 

Coherence Function, an Electroencephalography measure which could be used as a 

simple, and low-cost tool to describe the onset of cardinal signals of PD. Our hypothesis is 

based on three factors: beta frequency related to movement, motor action over particular 
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cortical regions, and cortical coupling between cortical areas involved in the execution of 

voluntary movement. We believe that these factors support our hypothesis pointing out 

coherence function as an interesting measure to detect initial stages of PD. 
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INTRODUCTION 

 

Parkinson’s Disease (PD) was first discovered in 1817 by a British 

physician named James Parkinson member of the royal college of surgeons (1). 

Parkinson published an essay describing, for the first time, the symptoms of PD as 

“paralysis agitans”(2). Nowadays, it is known that PD is a chronic, degenerative and 

progressive pathology with an average onset of individuals older than 60 years. 

However, in rare cases the symptoms can appear much earlier in younger adults. The 

major cardinal symptoms of PD are akinesia, bradykinesia, rigidity (stiffness of the 

muscles), tremor, postural and balance instability (3). At the present moment, the PD 

etiology is not well established, however, some hypothesis and findings support several 

explanations about the cause of the disease (4). The loss of dopaminergic neurons in the 

substantia nigra has been point out as the most significant outcomes (5,6). This reduction 

of the neurotransmitter dopamine produces the primary motors symptoms of PD. This 

dopamine dysregulation induces a hyperactivity of the indirect tract which is responsible 

for the nerve impulses flow from the thalamus to the cerebral cortex (7). Even though we 



  

have acquired a variety of knowledge from PD experiments, the parameters to establish 

a precise diagnosis still remain controversial (8,9). The most effective current method 

remains to use subsequent follows ups with reassessment of the physical and 

neurological symptoms in during the initial phase of PD or when Levodopa has less 

effect, have shown controversial results. In this context, our hypothesis aims to fill a 

methodologic gap exploring techniques that could give support to detect the initial phase 

of Parkinson Disease. In particular, our hypothesis is based on three previous neural 

aspects (beta frequency, neural population region distribution, and coupling between 

regions) that together would help early diagnoses of Parkinson Disease. 



  

 

HYPOTHESIS 

 

 Among several diagnostic approaches utilized for the management of PD, the 

electroencephalography (EEG) has been considered less often despite EEG studies 

performed to patients during the initial phase of this disease (10). EEG was developed 

in 1924 by Hans Berg and since then, a large amount of knowledge and several EEG 

variants were discovered correlating mental stages and plastic changes in the cerebral 

cortex (11). Typically, EEG is a non-invasive electrophysiological monitoring technique 

to record electrical activity from superficial layers through multiples electrodes 

distributed across the scalp for a certain period of time (12,13). Due to its excellent 

temporal resolution, the EEG allows to better assess data related to cortical processing 

and activity when comparing it to other techniques, such as Single Photon Emission 

Computed Tomography (SPECT), Positron Emission Tomography (PET) scan and 

Magnetic Resonance Imaging (MRI) (14,15). However, EEG still shows significant 

limitations associated with its spatial resolution. In order to cope with this disadvantage, 

contemporary EEG systems were increased to hold more channels i.e., caps built with 

512 channels (16). 

A variety of parameters can be extracted from EEG signals. One of these 

parameters, Coherence Function (CF), has been used to assess the relationship among 

distinct cortical areas. Since CF quantifies cortico-cortical functional connectivity, it can 

be used during neurophysiological investigations to understand the coupling or the flow 

of information between these cortical areas observed on a specific frequency range (17). 

Specifically, CF provides a measure of linear dependence through the frequency domain 

between a pair of electrodes placed on the scalp (18). In this context, we introduce the 



  

hypothesis that CF can be used to evaluate and distinguish PD patients in the initial 

phase of the disease. Coherence is such a sensitive measure it can detect changes in the 

functional and effective cortical interconnections which have occurred in the initial 

onset of PD (19). In detail, CF mathematically quantifies frequency of synchronized 

neural pattern resulting from the oscillatory activity of the brain (20). In addition, CF 

can be interpreted as an estimate of the amplitude and phase between a pair of 

electrodes through a wide range of frequencies (e.g. delta, theta, alpha, beta and 

gamma). When this consistency is maintained we can observe an increase in the values 

of coherence, in the opposite, the lack of this consistency will produce a reduction in the 

CF value. Our hypothesis focuses on three important factors which would allow CF to 

distinguish between healthy individuals and PD patients. The first factor is related to 

beta frequency, which responds to several stimuli, such as: alertness, attention, problem 

solving, judgment, and decision making essentially located on primary motor cortex and 

supplementary motor areas (21). In addition, beta frequency has been associated with 

sensory information, muscle contraction and several changes in movement patterns. The 

second fact is correlated to distribution regions (i.e., cortical and subcortical areas) 

involved with motor action, particularly, during volitional or voluntary movements (22). 

The last factor would explore the possible cortical interconnections during real-time 

functional motor tasks and observe the coupling between cortical areas through the 

Coherence Frequency.  

 

EVALUATION OF THE HYPOTHESIS 

 

 Even though it is described as a simple motor action, the ability to execute a 

motor task, such as grasping an object is an extremely complex task for the Central 

Nervous System (CNS) and the Peripheral Nervous System (PNS). The coordination of 



  

this simple action involves several CNS structures which regulate the fine control of this 

motor action. This complexity is very obvious when motor tasks are observed in PD 

cases, the disease impact is seen when the motor system is activated. This motor 

coordination includes different stages of integration. Some examples of these stages are 

to identify, to perceive, to size an object, to estimate the trajectory of the movement and 

to perform the action (23). PD causes a considerable decrease of the neurotransmitter 

dopamine this occurs on basal ganglia, specifically at substantia nigra (6). This 

dysregulation produces an instability of communication between several neuroanatomic 

centers which participate during motor action. We look forward to arguing that CF 

would be an interesting methodological tool to evaluate and distinguish the coupling 

between cortical areas in PD patients during initial stages when compared to healthy 

individuals. Therefore, our hypothesis believing CF will show this unstable 

communication between several neuroanatomic centers for PD will be present in 3 

factors: i) beta frequency; ii) cortical and subcortical distribution; iii) coupling between 

regions.  

First factor- for more than four decades, beta frequency has been associated 

with a state of engagement evaluated during motor actions. This beta frequency has a 

range between 12.5 to 30 Hz or can be decomposed into sub-bands, such as: beta 1 

(12.5-18.0 Hz); beta 2 (18.5- 25Hz); beta 3 (25.5-30Hz). The beta frequency was chosen 

due to findings associating the increase of this band on the subthalamic nucleus and its 

relation with the beginning of akinesia, which is one of the cardinal signals of PD (24).  

Increased beta activity is observed in motor regions during isotonic muscle contractions, 

and simultaneously, beta activity suppression is observed before initiating and during a 

motor action (25). In addition, beta activity increase during an isometric muscle 

contraction or a movement suppression. Pfurtscheller & Neuper (26) demonstrated an 



  

event-related desynchronization (ERD) which is a power beta decrease in relation to the 

baseline. This power reduction occurred around 10 Hz, 2 seconds before the beginning 

of the movement, and following the movement in a continuous form. At the same time, 

a peak beta activity around 30Hz was observed and correlated with the beginning of the 

movement. Pfurtscheller & Neuper (26) suggested that the motor planning is followed 

by an ERD over central regions, which is characterized by a mu activity, i.e., beta 

showing on motor regions, and also by a 30Hz oscillation onset with a 0.5 seconds 

duration.  

Second factor- Control, regulation, and orientation of a movement involve a 

complex brain network composed of cortical and subcortical regions, which seems to be 

not working correctly in PD cases. Each structure of this complex network contributes 

in a distinct way to the motor execution. Subcortical structures, such as hippocampus, 

cerebellum, basal ganglia, amygdala, and brainstem play an important role in motor 

action, however, we won’t be discussing them in this paper since their activity cannot 

be directly recorded by EEG (27,28). The Frontal and Parietal lobe are the most 

important brain regions involved in motor function. The Primary Motor Cortex (M1) is 

located immediately anterior to the central sulcus and lies along the precentral gyrys. 

The M1 is the main cortical area involved in motor function (29). The neural impulses 

coming from M1 control and regulate muscles of the contralateral sides of the body. All 

parts of the body are represented in the motor strip and are somatotopically arranged in 

relation to the body part use and sensibility (30). The clinical evolution of PD produces 

alterations of several structures, particularly alteration of connection between Putamen 

and Motor Cortex. In parallel, functional changes are presented on dopaminergic cell 

projections from midbrain directly to motor regions (31). The motor cortex also 

includes the Brodmann area 6. This area is located anterior to the M1 and it is divided 



  

into the Premotor Cortex (PMC) and the Supplementary Motor Area (SMA). The PMC 

assists in posture and is a key cortical area for movement guided by cutaneous and 

proprioceptive feedback (32,33). The SMA, however, is located anterior to M1 and 

medial to the PMC. Studies suggested that SMA is involved in motor planning and 

movement initiation based on previous experiences (34,35). A movement anticipation is 

one of example where it is possible to observe the engagement of the SMA. In addition, 

this area is also involved in the planning of complex movements and bilateral 

coordination activities (36,37). Both SMA and PMC send inputs to M1 and to several 

brainstem regions (38,39). Besides the Frontal cortex, the Posterior Parietal Cortex also 

plays an important role in voluntary movements. This region receives several inputs, 

such as: somatic, proprioceptive, and visual which are used to determine the localization 

of the body and a target-object in space. The integration of these stimulus creates an 

internal representation, an internal model of the external environment that can predict 

motor commands before the engagement of motor areas. PD patients when compared to 

control demonstrated a diminished functional connectivity between anterior cingulate 

cortex and parietal cortex, in particular, between the precuneus and the inferior parietal 

lobule. Changes in the default-mode network (DMN) have been highlighted in PD 

patients with primary akinetic-rigidity. The Inferior parietal cortex and left posterior 

cingulate cortex showed decrease activity with DMN when PD patients primary 

akinetic-rigidity when compared to the control group and the PD with tremor-

predominant symptoms (40). 

The third factor refers to the possibility of exploring the interconnections or 

coupling between cortical areas through CF during real-time functional motor tasks. 

The CF allows to obtain an overall notion about how cortical areas are coupling to 

detect environment parameters and tasks features. For example, grasping an object 



  

recruits several cortical regions to deal with a very complex series of tasks (23,41). The 

complexity of this action involves not only the M1 role, but the engagement of other 

motor regions, and parietal regions (42). In this context, instead of analyzing each 

region separately, it is much more interesting observe the coupling between them. In 

this way, it would allow us to understand the dynamic interaction of the essential 

regions engaged during a motor action. In particular, CF would show us the coupling 

between nearby regions directly involved in the motor action. A simple task, 

flexion/extension of the index finger is a good example to illustrate how the adjacent 

regions of the motor cortex participate, increasing or decreasing their coupling during a 

motor execution (43). When trying to understand the dynamic of a particular patient 

population it is possible to investigate between brain regions by using CF. 

 

 

DISCUSSION 

Parkinson Disease is a progressive neurodegenerative disorder which affects the 

mobility of the patient. The progressive loss of the dopaminergic neurons over 

substantia nigra cause a deeper imbalance of the nigrostriatal pathway which is the 

efferent connection between the substantia nigra and the corpus striatum (44). The 

corpus striatum contains high level of acetylcholine and dopamine (45). The cardinal 

symptoms of PD are attributed to the progressive loss of striatal dopaminergic neurons 

(46). Our proposed hypothesis is based on the assumption that Beta Coherence will be 

able to detect under the cerebral cortex supposed alterations that occurred in synapses 

and neurons over subcortical structures and changes on communication between deep 

nuclei and superficial sensory and motor regions. Distinct models have had been 

proposed in order to better understand the PD, such models represent diverse aspect at 



  

several levels: Behavioral, Neurophysiological, Molecular and Cellular (47). CF gives 

the possibility to explore the linear relation between two signals. This relation expresses 

the functional connectivity between regions assessed through a frequency range, for 

example, beta frequency. A higher coherence value demonstrates a higher coupling 

between regions (48–50). A coupling between cortical areas using CF reflects a 

compensatory mechanism. This dynamic suggests neuroplasticity modulation associated 

with progressive and chronic loss of dopamine, in particular, over basal ganglia (51). 

The evidence pointed out the hypothesis evaluation section supported the idea that EEG 

technique could be used to evaluate and distinguish PD patients in the initial phase of 

the disease. For this reason, CF can be an interesting tool to detect changes in scalp 

activity coming from deeper unstable structures during the initial phase of PD. In 

addition, the CF was showed to be able to measure the coupling between distinct 

regions based on the International 10-20 system EEG placement (52). Lastly, this EEG 

derivation allowed the possibility to explore the degrees of connection between distinct 

areas that have a main or secondary role in the motor action (53).  

 

 

CONCLUSION 

 The present hypothesis points out that Coherence Function is an interesting tool 

to help diagnose initial stages of Parkinson Disease. In particular, the possibility to 

detect, through non-invasive scalp electrodes, cortical dynamic imbalances make the CF 

a relevant tool to study PD. Furthermore, beta frequency sensibility in relation to 

movement/action provide a supplementary feature to CF. Additionally, the design of a 

detailed database built on specific statistical principles for confirmation of the pathology 



  

(stage of PD), age range, and sample would be the basic criteria for the use of the 

measure as a low cost and simple means of diagnosing PD. 
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Captions to illustrations 

 

Figure 1: Schematic illustration of the three study-hypothesis: 1.A) Beta Frequency; 

1.B) Cortical areas related to motor action; 1.C) Cortical coupling between regions 



  

 

Figure 2: Hypothesis basis diagram: Fast Oscillation - Increased beta activity is 

observed in motor regions during isotonic muscle contractions, and simultaneously, beta 

activity suppression is observed before initiating and during a motor action; Distributed 

Cortical Network in Parkinson’s Disease – cortical and subcortical areas associated with 

motor control; Cortico-cortical Coupling – exploring the interconnections or coupling 

between cortical areas through Coherence Frequency during real-time functional motor 

actions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  

 

  



  
 


