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Analysis and Prediction of the Freezing of Gait
using EEG Brain Dynamics

A. M. Ardi Handojoseno,Student Member, IEEE, James M. Shine, Tuan N. Nguyen,Member, IEEE,
Yvonne Tran, Simon J. G. Lewis, Hung T. Nguyen,Senior Member, IEEE

Abstract—Freezing of Gait (FOG) is a common symptom in the
advanced stages of Parkinson’s disease (PD), which significantly
affects patients’ quality of life. Treatment options offer limited
benefit and there are currently no mechanisms able to effectively
detect FOG before it occurs, allowing time for a sufferer to
avert a freezing episode. Electroencephalography (EEG) offers
a novel technique that may be able to address this problem.
In this paper, we investigated the univariate and multivariate
EEG features determined by both Fourier and wavelet analysis
in the confirmation and prediction of FOG. The EEG power
measures and network properties from 16 patients with PD
and FOG were extracted and analyzed. It was found that both
power spectral density and wavelet energy could potentially act
as biomarkers during FOG. Information in the frequency domain
of the EEG was found to provide better discrimination of EEG
signals during transition to freezing than information coded in the
time domain. The performance of the FOG prediction systems
improved when the information from both domains was used.
This combination resulted in a sensitivity of 86.0%, specificity
of 74.4%, and accuracy of 80.2% when predicting episodes of
freezing, outperforming current accelerometry-based tools for the
prediction of FOG.

Index Terms—biomedical signal processing, electroencephalo-
gram, freeing of gait, movement disorders, Parkinson’s disease.

I. I NTRODUCTION

FREEZING of Gait (FOG) is a highly disabling symptom
that affects approximately one quarter of patients with

Parkinson’s disease (PD) in the early stages and over two thirds
in the advanced stages of the disease[1]. Clinically, FOG is
defined as a”brief, episodic absence or marked reduction of
forward progression of the feet despite the intension to walk”
[2]. Balance impairment and falls due to sudden FOG often
develop into one of the chief complaints among patients with
PD and also often lead to falls, which are associated with a
high morbidity and mortality in PD [3].
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The manifestation of FOG is intimately related to the exter-
nal environment of the individual. Several specific scenarios
have been found to initiate FOG, including dual tasking, pass-
ing through doorways or crowded areas, as well as stress and
anxiety. Together, the multifactorial nature of these triggers
indicates a multisystem deficit in FOG, in which impaired
information processing across cognitive, affective, and motor
domains leads to overwhelming inhibition over the brainstem
structures that control gait [4], [5]. This proposal has been
supported by the results of functional neuroimaging [6]-[8].

Since dopaminergic replacement therapy only partially alle-
viates FOG, different strategies have been developed to trigger
alternative neural circuits in behavioral control. Somatosensory
cues have been found to improve walking, -with visual cues
offering the strongest influence, followed by tactile, emotional
and auditory cues [9]. A recent investigation on the effect of
visual cues using laser on 7 PD patients with FOG showed
that on-demand cueing (only given when FOG episodes were
observed) is more efficient for reducing the duration of FOG
periods than continuous cueing [10], which indicates the
importance of a FOG detection system.

While various methods have been investigated to detect
the onset of freezing, none of these techniques seem able
to reliably detect FOG [11]-[15]. To predict the onset of
freezing at the earliest time before the actual FOG episodes,
as oppose to detection, we have used EEG due to its ability
to measure dynamic physiological change in the brain prior
to the occurrence of movement disturbances. Using EEG,
both cortical and subcortical activity can be studied through
the time-varying changes in certain spectral bands, which
also allow insights into the mechanism of FOG. Finally, the
portability and relative ease of use of EEG make it far more
useful for the mobile collection of brain activity data.

Wavelet decomposition based features have been developed
and show the potential of EEG signals as a bio-marker for
detecting FOG [16]. In this study, we attempted to find highly
discriminating features by investigating the performanceof
Fourier based features and their counterpart in the wavelet
domain, and the performance of univariate and bivariate EEG
measurements in detecting FOG in PD patients. Two inter-
related categories of EEG measurement were examined: power
or amplitude measures and EEG network properties, - which
may also disclose critical aspects of the functional connectivity
of neural networks during a freezing episode. Some classic
features such as power spectrum, centroid frequency and
statistical parameters were also computed, as well as more
recently developed features such as entropy, cross correlation,
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coherence, phase-locking value and weighted phase lag index.
Multilayer perceptron neural networks (MLP-NN) classifier
was employed for FOG detection, concentrating on the tran-
sition period between normal walking and an overt FOG
episode.

II. M ETHODS

The study included sixteen patients ranging in age from
56 to 78 years (mean: 64 years, std: 7.25 years) with the
mean Hoehn and Yahr stage when ”off” medications over night
was 2.34± 0.73 and the mean of the Unified Parkinson’s
Disease Rating Scale III stage when ”off” was 40.10± 12.21.
All of them had a FOG history with different severity and
frequency. The research protocol was approved by The Human
Research and Ethics Committee from the University of Sydney
before data collection began. The experiment took place in the
Parkinson’s Disease Research Clinic at the Brain and Mind
Research Institute, University of Sydney during a one week
period. A series of a standardized timed up-and-go tasks were
performed and all trials were video recorded for scoring.

Several researchers have shown that information on EEG
signals relating to mental tasks or the physiological condition
can be tracked using only a minimum points of measurement
[17], [18]. Fewer channels are clearly preferred for patient
ease and to limit noise and artifacts. Moreover, it reduces the
cost in signal processing, feature extraction and classification
process; and makes the setting up of the system much easier
and faster.

In this study, the EEG was recorded using a 4-channel
wireless EEG system with gold cup electrodes which were
placed on 4 scalps locations based on their roles in percep-
tual and control movement (O1-visual, P4-sensorimotor affor-
dance, Cz-motor execution and Fz-motor planning). Bipolar
EEG leads were used to acquire data from central zero (Cz)
and frontal zero (Fz) with the reference electrode placed at
FCz, and from occipital one (O1) and parietal four (P4) with
the reference electrode at T4 and T3, respectively. The EEG
signals were amplified with common rejection ratio>95 dB,
sampled at a rate of 500 Hz, and band-pass filtered between
0.15 and 100 Hz.

Overall 5.5 hours of data were collected from the stan-
dardized timed up-and-go test and 404 FOG episodes, with
a duration between 1 sec and 220 sec, were labeled by
two clinicians specializing in movement disorders. Two other
episodes were determined based on this period: transition
episodes which cover a period between 5 to 1 seconds before
freezing, and normal walking which refers to a period of 1
second after freezing to 5 seconds before the next freezing
period. The distribution of FOG among the patients were
not equal: 3 patients had between 6 and 10 episodes during
testing and the remaining 13 patients experienced more than10
events. A total of 1902 one second duration samples of three
episodes (normal walking, transition, FOG) from all patients
were included with each episode contributed evenly (634
samples). Data from eleven patients were randomly chosen
for training and testing (consisting of 1386 samples, 462 in
each class). Another set of testing data files, which have never

been used in the training process, were also taken from the
other five patients (516 samples, 172 in each class) to examine
the robustness of the system in classifying the EEG signals
from out-group patients. Low frequency noise, high frequency
noise and 50 Hz line frequency noise were eliminated using
band-pass (0.5-60 Hz) and band-stop (50 Hz) Butterworth
IIR filters. Ocular and muscular artifacts were removed using
Stein’s unbiased risk estimate thresholding based on wavelet
transforms.

III. F EATURE EXTRACTION

A. EEG Linear Univariate Measurements

Power spectral density (PSD), which is widely used and
successfully applied to characterize signals in a system, shows
the strength of the energy as a function of frequency. It implies
stationary process during the time window. While EEG signals
are known as non-stationary signals with non-linear behaviour
[19], fragments of EEG with length up to 290 ms can be
treated as stationary [20].

In this study, the spectra are calculated via Welchs method
using a 516 point Fast Fourier Transform (FFT) and periodic
Hamming windows with an overlap of 50 %. The duration of
the stationary fragments is assumed to be 110 ms with the
sampling frequency 500Hz. To eliminate inter-individual and
inter-electrode variance in absolute measurements, the power
spectrum was normalized by expressing each power spectral as
a percentage of total power in a frequency window of 0.5Hz-
60HZ and in all electrodes. EEG bands of interest were delta
(1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz),
and gamma (30-60 Hz).

Furthermore, we calculate the shift of the center of gravity
of frequency band based on this normalized power spectrum,
Spectral Centroid Frequency (SCF). It has been reported to be
capable of classifying different types of EEG in various health
conditions [21] [22] and is defined as:

SCF =

∑

i fi ∗ P (f)
∑

i P (f)
. (1)

Over the past few decades, wavelet analysis has been devel-
oped as an alternative and improvement on Fourier analysis.Its
main advantage in analyzing physiological systems is its capa-
bility to detect and analyze non-stationarity in signals and its
related aspect like trends, breakdown points, and discontinuity,
since wavelets are well localized in both time and frequency
domain. Unlike Fourier transform which is limited to a scaled
single sinusoidal function, wavelet transform generates atwo-
parameter family of wavelet functionψa,b(t) by scaling(a)
and shifting (b) the function, so that the correlation called
continuous wavelet transform (CWT) is given by [23].

CWT (a, b) =

∫ ∞

−∞

x(t)
1

√

|a|
ψ∗(

t− b

a
)dt (2)

with (∗) denotes the complex conjugation.
The development of wavelet-based signal compression al-

gorithm led to the invention of the fast discrete wavelet
transforms (DWT) which removes redundancy in the signals
and simplify the numerical calculations. In DWT time-scaled
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parameters (b, a) are sampled on a dyadic grid with scales
a = 2j (reciprocal of frequency) and positionsb = 2jk (time
localization), so that DWT is defined as,

DWT (j, k) =
1

√

|2j|

∞
∑

t=−∞

x(t)ψ(
t − 2jk

2j
). (3)

In the multi resolution analysis, signalx (t) with maximum
cut-off frequencyfm is split into two components using low
pass filter and high pass filter and is down sampled by 2 to
provide the approximation signalsAj and the detail signalsDj

with lower cut-off frequency band [0 : fm /2] and upper cut-off
frequency band [fm/2 : fm ], respectively [24]. Based on the
Nyquist criterion, maximum cut-off frequency is determined
by fm=fs/2 (l+1 ) where fs is the sampling frequency of the
original signal andl is the level of decomposition. The
approximation is subsequently decomposed and this process
is continued until the target level is achieved.

The wavelet decomposition for a given EEG signalx (t) at
scalesj=1,2,...,J and time pointk then could be written as

x(t) =
∑

k

cJ,kϕJ,k(t) +
∑

k

∑

j≤J

dj,kψj,k(t) (4)

wherecJ ,k , dj ,k , ϕj,k(t) andψj,k(t) are the approximation co-
efficients, the detail coefficients, scaling function and wavelet
functions, respectively. Daubechies (db4) wavelet that has been
found as properly representing EEG signals and spikes [25]
was selected as wavelet function.

With the EEG sampled at 500 Hz, a good match to the
standard clinical EEG subbands can be achieved using a six
level decomposition as can be seen in Table 1. Reconstruction
of these signals which are decomposed into five constituent
EEG subbands is depicted in Fig.1.

TABLE I
FREQUENCYBANDS CORRESPONDING TODIFFERENTDECOMPOSITION

LEVELS

Decomposed signals Frequency bands (Hz) Decomposition Level
D1 125-250 1 (noises)
D2 62.5-125 2 (noises)
D3 31.3-62.5 3 (γ)
D4 15.6-31.3 4 (β )
D5 7.8-15.6 5 (α )
D6 3.9-7.8 6 (θ )
A6 0-3.9 6 (δ)

In wavelet analysis, the energy of signals which correspond
to PSD, wavelet energy (WE), can be partitioned at different
levels of wavelet decomposition(j = 1, ...l) according to
Parseval’s Theorem, and is expressed as a function of the
scaling and wavelet coefficient [26]:

ET =

∫

|f(t)|2dt =
∑

k

|cJ,k|2 +
∑

k

∑

j≤J

|dj,k|2. (5)

Corresponding to SCF, we also calculated Centroid Scale
(CS) based on the CWT scalogram to show the shift of the
center of gravity of frequency band. The CWT was chosen
since it has a better frequency (scale) representation compared
to the DWT. We used the complex Morlet wavelet due to its

narrow spectral band and an extended time domain made it
more suitable for extracting information in frequency domain
[27]. It is equivalent to a complex sinusoid with Gaussian
envelope and can be written as [28]

ψ0(t) =
1
4
√
π
ej2πfte−

t
2

2 . (6)

B. EEG Non-Linear Univariate Measurements

Brain signals have been known as the output of a nonlinear
system. Consequently, various measures which characterize
the nonlinear behaviour of EEG signals have also been de-
veloped. In this study, entropy was used as an index of EEG
complexity or irregularity based on Shannon’s Information
Theory. The power spectral entropy (PSE) of EEG signalx is
defined as:

PSE(x) = −
fh
∑

i=fl

PilogPi (7)

wherePi is the normalized power density from the signal’s
spectrum so that

∑

Pn = 1 while fl andfh are the frequency
band of interest. Larger entropy values suggest a greater
complexity. The wavelet energy entropy (WEE) were found
using similar formula, with

Pi =
Ej

ET

(8)

in which Ej refers to the energy of signals atjth frequency
band of decomposition andET refers to the energy of all
frequency bands of decomposition.

C. EEG Bivariate Measurements

There is a growing interest in the study of oscillatory
rhythms and their synchronization related to the dynamic
organization of communication in the nervous system. They
have been associated with diverse functions such as motor
activity, attention, memory and emotion. This was obtainedby
joining signals from multiple channels to detect the alteration
of the functional connectivity in the brain related to different
brain conditions.

In this study, quantification of neural correlation was done
based on the cross-correlation function, defined as [30]

Rxy(k) = E[x(n)y(n+ k)] (9)

wherex(n) andy(n+k) are two joint signals,k is the number
of time units that the signaly(n) is lagged in regards tox(n),
andE[.] is the expectation operator.

Cross Power Spectral Density(CPSD) as the distribution of
power per unit frequency is defined as

Pxy(f) =

∞
∑

k=−∞

Rxy(k)e
−j2πfkT . (10)

Ratio of CPSD to the product of the related auto-power
spectral densities (APSD) shows the coherency, a measurement
of amplitude and phase coupling, and is defined as

Cxy(f) =
|Pxy(f)|

√

Pxx(f)Pyy(f)
. (11)
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Fig. 1. Decomposition of EEG into detail (d1-d5) signals related to five standard clinical EEG subbands by db4 wavelet in subject 6 shows the amplitude
and frequency alterations preceding and during freezing episode. Movement amplitude is increased preceding the freezing episode.

Coherency function is a function of frequency and can be
used to analyse which frequency of two sets of time series
data are coherent. While correlation emphasizes the similarity
of waveform between two signals and gives the information
on their time coupling, coherency measures the stability of
that similarity [31]. Coherence is defined as the modulus of
the coherency, also called the magnitude squared coherence
(MSC) and typically estimated by averaging over several
epochs.

Analysis on the stability of phase shift over the specified
time interval also provides measurement of phase difference
between two signals. Detecting this phase-locking when the
phase difference is constant using correlation and coherence
can be problematic since they are affected by the amplitude
component which can be noisy or uncorrelated.

Weighted Phase Lag Index (WPLI) was calculated to mea-
sure this phase-synchronization. Proposed by Vinck et al [32],
it has been demonstrated as reduced sensitivity to noise,
increased capacity to detect changes in phase synchronization
and is not affected by volume-conducting correlated sources
of interest. WPLI is defined as

Φ ≡ |P{ℑ{X}}|
P{|ℑ{X}|} =

|P{|ℑ{X}| sgn(ℑ{X})}|
P{|ℑ{X}|} . (12)

Wavelet analysis has been proposed in estimating the time
varying coherence among non-stationary signals including
neural signals since FFT is incapable of providing temporal
structure information of signals. While a real wavelet function
has been used for detecting peaks and discontinuities, informa-
tion about the difference of phase can only be extracted using
a complex wavelet function. Moreover, it is a better method
for capturing oscillatory behaviour. In this study, we useda
complex Morlet wavelet which has been proved provided the
best time-frequency resolution in the EEG analysis compared
to other wavelet functions [33].

Corresponding to a similar concept in Fourier analysis,
the autocorrelation function of the wavelet transformation
produces a wavelet power spectrum (WPS) which describes
the power of the signalsx(t) at a certain timeti on a scales:

WPSi(s) =Wi(s)Wi(s)
∗. (13)

The extension of the univariate WPS to a comparison of
two time seriesx andy at time shift indexi and scales with
their wavelet transform coefficientsWxi

andWyi
, the wavelet

cross spectrumWCSi(s), is defined as

WCSxyi
(s) = S(Wxi

(s)W ∗T
yi

(s)) (14)

where S is a smoothing operator. The interaction between
signalsx and y at the given frequency is measured by the
product of two spectra expressed by wavelet coefficients of
the time scale representation of EEG sub-bands.

Analogous to Fourier-based coherence, wavelet coherence
is defined as the amplitude of the WCS normalized to the two
single WPS:

WCOxyi
(s) =

WCSxyi
(s)

√

S(|WPSxxi
(s)|2)

√

S |WPSyyi
(s)|2

.

(15)
To measure phase synchrony based on wavelet transform,

Phase Locking Value (PLV) proposed by Lachaux et al. [34],
which has been also called as mean phase coherence [35], was
used in this study, defined as

PLVt =
1

N

∣

∣

∣

∣

∣

N
∑

n=1

Nejθ(t,n)

∣

∣

∣

∣

∣

(16)

whereθ(t, n) is the phase difference between the signals which
can be derived from the angles of their wavelet-coefficients
θ1(t, n)−θ2(t, n). Just like WPLI, the value of PLV is always
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TABLE II
CORRELATION ANALYSIS OF NORMALIZED POWER SPECTRALDENSITY AND NORMALIZED WAVELET ENERGY BETWEEN NORMAL WALKING (NW)

AND TRANSITION TO A FREEZING OF GAIT(TR)

Power Spectral Density Wavelet Energy
Lead Frequency NW TR NW vs TR NW TR NW vs TR

δ 0.0868± 0.0595 0.0816± 0.0743 ∗ 0.0051± 0.0094 0.0082± 0.0373 ∗

θ 0.0872± 0.0565 0.0814± 0.0716 ∗ 0.0005± 0.0012 0.0003± 0.0007 ∗

O1 α 0.0643± 0.0361 0.0575± 0.0459 ∗ 0.0007± 0.0018 0.0004± 0.0029 ∗∗

β 0.0691± 0.0375 0.0426± 0.0252 ∗ ∗ ∗ 0.0005± 0.0017 0.0004± 0.0032 ∗ ∗ ∗

γ 0.0415± 0.0330 0.0160± 0.0159 ∗∗ 0.0003± 0.0012 0.0007± 0.0081 ∗ ∗ ∗

δ 0.1436± 0.0837 0.0920± 0.0652 ∗∗ 0.0133± 0.0536 0.0068± 0.0333 ∗∗

θ 0.1456± 0.0770 0.0949± 0.0632 ∗∗ 0.0007± 0.0019 0.0003± 0.0009 ∗

P4 α 0.1104± 0.0444 0.0750± 0.0445 ∗ ∗ ∗ 0.0013± 0.0030 0.0006± 0.0041 ∗ ∗ ∗

β 0.1428± 0.0711 0.1013± 0.0744 ∗ ∗ ∗ 0.0013± 0.0040 0.0005± 0.0030 ∗ ∗ ∗

γ 0.1033± 0.0827 0.0663± 0.0668 ∗ 0.0011± 0.0025 0.0006± 0.0039 ∗∗

δ 0.0439± 0.0552 0.1466± 0.1070 ∗ ∗ ∗ 0.0014± 0.0023 0.0052± 0.0120 ∗

θ 0.0435± 0.0536 0.1443± 0.1048 ∗ ∗ ∗ 0.0002± 0.0006 0.0008± 0.0015 ∗

Cz α 0.0301± 0.0349 0.0972± 0.0699 ∗ ∗ ∗ 0.0002± 0.0004 0.0003± 0.0006
β 0.0200± 0.0158 0.0473± 0.0326 ∗ ∗ ∗ 0.0001± 0.0001 0.0001± 0.0002 ∗

γ 0.0024± 0.0022 0.0039± 0.0055 0.0000± 0.0000 0.0001± 0.0009
δ 0.0021± 0.0025 0.0042± 0.0094 0.0001± 0.0002 0.0003± 0.0016 ∗

θ 0.0019± 0.0023 0.0040± 0.0089 0.0000± 0.0000 0.0000± 0.0002
Fz α 0.0012± 0.0014 0.0025± 0.0054 ∗ 0.0000± 0.0000 0.0000± 0.0001 ∗

β 0.0003± 0.0004 0.0009± 0.0017 ∗ 0.0000± 0.0000 0.0000± 0.0000 ∗

γ 0.0000± 0.0000 0.0001± 0.0006 ∗ 0.0000± 0.0000 0.0000± 0.0001 ∗

∗ = p ≤ 0.05 and r< 0.3
∗∗ = p ≤ 0.05 and 0.3≤ r < 0.4
∗ ∗ ∗ = p ≤ 0.05 and r≥ 0.4

between 0 and 1 with a value of 1 signifying perfect synchrony
in which one signal perfectly follows the other.

D. Statistical Test and Classification

In order to build a faster and better classification system,
we selected the most relevant univariate features using non-
parametric statistical analysis - the Wilcoxon Sum Rank Test.
Only features with significant statistical differences between
those groups of data (p-value<0.05) were chosen for further
process.

Classification data sampled using selected features were
based on three layers MLP-NN with 56%, 25% and 19% of the
data, randomly split, used for training, validation and testing,
respectively. Levernberg Marquardt algorithm was chosen as
a training method for its speed and stability [38]. Known
as a combination of the Gauss-Newton technique and the
steepest descent method, the Levernberg-Marquardt algorithm
essentially is an iterative technique that located the minimum
of an objective error function:

E(w) =

m
∑

i=1

e2i (w) = ‖f(w)‖2 (17)

wheree2i (w) = (ydi−yi)2 is an individual error, the difference
between the desired value of output neuronydi and the actual
output of that neuron,yi, andw is the weight vector. The
Levenberg-Marquardt algorithm is used to find the new weight
vectorwk+1 to reach the optimum performance of the system:

wk+1 = wk − (JT
k f(wk))(J

T
k Jk + λI)−1 (18)

where Jk is the Jacobian of functionf(.) at wk, λ is the
learning rate andI is the identity matrix.

Validation set was used as a stopping criterion to avoid
overfitting as well as error goal 0.01 in single MLP-NN with
4 to 12 hidden layer neurons. Each feature was trained and
tested fifty times based on the repeated random sub-sampling
and the mean result was recorded. The sensitivity, specificity,
accuracy and area under the Receiver Operating Characteristic
curve of classification system were calculated to measure the
performance of the features.

IV. RESULTS

A. EEG Linear Univariate Measurements

In the statistical analysis of PSD and WE for differentiation
of two EEG conditions, normal walking and transition to FOG,
the discriminative value (p-value<0.05) was found in almost
all frequency bands as can be seen in Table 2. However, when
effect size was taken into account, the alpha frequency bandin
parietal appeared as the most important feature signified with
the decreasing of normalized PSD and WE during transition
to FOG compared to normal walking (PSD, z = 7.98p <0.05,
r = 0.40; WE, z = 8.36,p <0.05, r = 0.42). In addition, there
were significant increases in beta power in occipital (PSD, z
= 7.98p <0.05, r = 0.40; WE, z = 9.57,p <0.05, r = 0.48),
parietal (PSD, z = 7.98p <0.05, r = 0.40; WE, z = 8.87,p
<0.05, r = 0.45) and central leads (PSD, z = 7.98p <0.05,
r = 0.40; WE, z = 2.63,p <0.05, r = 0.13), along with theta
activity in central (PSD, z =-12.80p <0.05, r = 0.92; WE, z
= -5.27,p <0.05, r = 0.27 ).

Common patterns shared by Fourier transform based fea-
tures and wavelet transform based features clearly showed in
the shifting centroid frequency in the beta, alpha and theta
frequency band during transition and freezing episodes. The
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beta frequency band stands out as the most affected frequency
band in transition to freezing with the most significant shift
happening in the central lead (SCF, z = 11.04p <0.05,
r = 0.56; CS, z = -8.33,p <0.05, r = 0.42 ) while the
fronto-central cortical region has been more affected than
the parieto-occipital region. When compared to the walking
period, episodes of freezing were associated with significant
shifting in the theta frequency band with the largest shift of
centroid frequency in the frontal leads (SCF, z = -4.11p <0.05,
r = 0.21; CS, z = 4.55,p <0.05, r = 0.23).

B. EEG Non-Linear Univariate Measurements

The result of entropy analysis shows a decrease of entropy
in most frequency bands and electrodes during freezing of gait.
The most significant change during transition to freezing was
detected in the beta frequency band both at central (PSE, z =
11.01,p <0.05, r = 0.56) and frontal (PSE, z = 8.23,p <0.05,
r = 0.42 ). This trend was continued in the onset of freezing
with lower effect size (Central: PSE, z = 4.35,p <0.05, r =
0.22 ; Frontal: PSE, z = -5.44,p <0.05, r = 0.28).

The entropy analysis on wavelet energy which measures
the temporal regularity of energy in each frequency band also
revealed the loss of complexity during transition in most of
all the frequency bands and electrodes with the beta band
appearing as the most affected frequency band. There was a
significant decreased regularity of gamma activity in the cen-
tral (WEE, z = 11.04,p <0.05, r = 0.56) during the transition,
along with a decrease in the beta band (WEE, z = 11.04,p
<0.05, r = 0.56). While these entropy were then increased at
the onset of the freezing period, they were still significantly
lower compared to walking, unlike the diminishing of all
irregularity at the occipital and parietal leads.

C. EEG Bivariate Measurements

Fig. 2 shows the results from the phase synchrony anal-
ysis obtained from electrodes pairs in three mid-high fre-
quency bands during freezing of gait. Both parietal-frontal and
occipital-frontal cortices connections in the beta and gamma
frequency band are strongly synchronized in phase according
to WPLI analysis. In contrast, when PLV analysis was applied,
phase synchronization decreased significantly in the gamma
frequency band in both pairs of electrodes location.

In the coherency analysis, both MSC and WCO indicated a
significantly different coherency during transition to freezing
in parieto-occipital pairwise of electrodes in the theta, alpha
and beta frequency band as illustrated in Fig.3 and Fig.4. We
observed no significant change of coherency in parietal-central
cortices connection. Pairwise fronto-central shows alteration
of coherence in all frequency bands detected using WCO and
in three lowest band frequency using MSC. Amongst all the
changes, the most significant one is in the theta frequency
band at this pairwise of electrode (MSC, z = -8.11p <0.05,
r = 0.41; WCO, z = -5.05,p <0.05, r = 0.26).

D. Statistical Test and Classification

The performance of features extracted through univariate
analysis is generally stronger than bivariate analysis based

Fig. 2. Phase synchronization alterations during freezingof gait measured us-
ing Weighted-Phase Lag Index and Phase Locking Value show the functional
link between motor and visual in the high frequency EEG.

features. Both sub-band power spectrum and sub-band wavelet
energy features gave better results compared to their bivariate
mode, cross power spectrum and wavelet cross spectrum.
While our interest is more in the result of in-group testing,
since the translation of this method into a real device will be
customized for each user due to variation FOG characteristics
across patients, it is interesting to point out that the coherence
based features poorly performed when it was applied to out-
group patients. It shows that multivariate based features are
less robust against the inter-individual variability compared to
univariate based features.

The result of the experiment also shows that Fourier analysis
provided better result compared to wavelet analysis in the
extraction of the features related to frequency, entropy, and
phase synchrony. However, the changes in the wavelet energy
were found to be the best indicators of transition to FOG, with
sensitivity and accuracy of testing obtained in the experiment
involving in-group patients at 86% and 80.2%, respectively.
The using of wavelet cross spectrum also resulted in a better
accuracy compared to cross power spectrum in the experiment
related to in-group subjects and has been proven as to be more
robust when tested against out-group patients, maintaining the
accuracy at 77%.

V. D ISCUSSION

The present study compared several Fourier analysis based
features with their wavelet analysis counter-part and explored
their role in neural dynamics related to freezing of gait in PD.
Our finding that theta oscillations in human cortex increase
during transition to freezing and remain high during freezing
in the central region (see Table II-Power Spectral Density)is
consistent with multiple studies suggesting that there is a
relationship between FOG, specific deficits in cognition and
impairment in the motor planning mechanism [39]-[43]. The
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Fig. 3. Boxplot of Magnitude-Squared Coherence of EEG signals during normal walking and transition to freezing of gait (frequency band 5, used electrode
4). The Asterisk symbol indicates that the boxplot at its left is significant (p-value <0.05). The higher number of the asterisk symbol refers to thehigher
r-value.

Fig. 4. Boxplot of Wavelet Coherence of EEG signals during normal walking and transition to freezing of gait (frequency band 5, used electrode 4). The
Asterisk symbol indicates that the boxplot at its left is significant (p-value<0.05). The higher number of the asterisk symbol refers to thehigher r-value.

TABLE III
CLASSIFICATION RESULTS OF PROPOSED FEATURES USINGMLP-NN IN DETECTING TRANSITION5 SECOND BEFORE FREEZING FROM NORMAL WALKING

In-group (11 patients) Out-group (5 patients)
Features Training Testing Testing

Se % Sp % Ac % Au % Se % Sp % Ac % Au % Se % Sp % Ac % Au %
F1 84.81 84.89 84.83 85.61 79.69 77.98 78.68 79.14 75.86 65.37 70.62 71.52
F2 85.12 82.29 83.67 84.12 81.00 78.96 80.00 79.40 68.51 83.65 76.08 74.53
F3 83.46 82.54 83.00 81.95 79.45 76.94 78.10 79.31 73.02 79.53 76.28 74.30
F4 81.31 81.49 81.71 81.44 74.88 74.76 74.88 75.88 68.40 68.77 68.56 67.42
F5 71.92 77.14 74.58 74.86 70.75 71.73 70.75 69.41 66.16 72.88 68.42 67.23
F6 63.70 80.43 72.10 71.06 64.20 81.22 72.88 71.18 54.88 87.09 70.99 69.04
F7 89.28 78.21 83.75 83.55 86.00 74.43 80.20 79.73 73.19 80.16 76.67 75.88
F8 85.82 80.82 83.29 83.54 79.35 73.81 76.47 75.75 68.77 76.98 72.87 71.27
F9 77.51 73.19 75.29 75.46 71.53 67.00 69.32 70.10 75.09 67.05 71.07 70.14
F10 78.73 87.22 83.00 84.66 72.76 82.89 77.42 77.20 69.93 85.16 77.55 77.80
F11 75.66 78.88 78.67 77.54 66.33 67.71 69.42 68.51 57.51 53.72 52.16 52.37
F12 70.02 74.15 72.07 72.31 60.80 66.13 62.47 61.41 73.07 54.42 52.13 52.52

Se: Sensitivity; Sp: Specificity; Ac: Accuracy; Au: Area under the Receiver Operating Characteristic curve
F1: Power Spectral Density (PSD); F2: Spectral Centroid Frequency (SCF); F3: Power Spectral Entropy (PSE)
F4: Cross Power Spectral Density (CPSD); F5: Magnitude-Squared Coherence (MSC)
F6: Weighted Phase Lag Index (WPLI); F7: Wavelet Energy (WE)
F8: Centroid Scale (CS); F9: Wavelet Energy Entropy (WEE)
F10: Wavelet Cross Spectrum (WCS); F11: Wavelet Coherence (WCO); F12: Phase-Locking Value (PLV)
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analysis of the frequency shift and coherency based on MSC
and WCO provided more support to the importance of fron-
tocentral activity in FOG (see Fig.3 - Fig. 4 in which the
frontocentral pairwise is significant in most of all frequency
bands).

The entropy analysis of the frequency domain based on the
changing of power spectral shows an increase of regularity
on nearly all frequency bands and most electrodes during
transition and this continued in the freezing period. Therefore
we can infer that brain activity is ”less complex” when patients
undergo change from their normal walking state to freezing
of gait. The alteration in the information processing during
this stage is possibly due to an inactivation of previously
active neural networks as a result of the impairment of the
more ”executive” functions of the brain. This result is also
aligned with the general ”loss of complexity” behaviour in
other diseases and states of the brain including epilepsy [44],
Alzheimer’s [45], and autism [46].

While there are clear differences in the result of phase
synchrony calculation using WPLI and PLV, both are in
agreement with the increase of beta synchronization. This
result is aligned with the work of E. Heinrichs-Graham et
al. [47] who used magnetoencephalography (MEG) and found
beta desynchronization prior to and during movement onset as
well as increased gamma activity in Parkinson’s disease. The
analysis on the primary motor cortex arm area by Hemptinne
et al. [48] also found the exaggerated coupling between beta-
phase and gamma amplitude in those areas in PD patients.
This coupling has been reported in relation to movement
preparation and control of different cognitive functions includ-
ing memory and attention. Interestingly, we also noticed the
significant coherence in the gamma frequency band at pairwise
O1-Cz and Cz-Fz, detected using wavelet coherence.

The comparison between power spectral entropy based on
the signals dynamic in the frequency domain and wavelet
energy entropy based on the signals dynamic in the time
domain revealed that information of EEG signals are coded in
the frequency domain rather than in the time domain. Along
with the results of classification using centroid frequencyand
centroid scale, it shows that Fourier analysis provides better
features in frequency domain compared to wavelet analysis.
This precision on frequency, following the Heisenberg Uncer-
tainty Principle, is at the cost of zero information about the
temporal dynamic of the signal.

The wavelet analysis provides information on time localiza-
tion which has increased the performance of the classification
system as is shown in the result of wavelet energy. However, in
the time-space correlation and coherence, the performanceof
features extracted using the windowed Fourier transform and
the wavelet transform were comparable, with the computation
time taken by CWT found to be significantly longer than the
windowed Fourier transform. This limits the practical usesof
CWT in practical application.

Wearable systems for the detection of FOG episodes have
been developed using accelerometers as the main sensor with
the sensitivity exceeding 80% [14] [15] [49] [50]. However,
unlike the detection system with EEG, those results were ac-
quired in identifying the onset once FOG appeared. Moreover,

due to dependency to the physical movement of the body,
accelerometers could not differentiate between freezing and
voluntarily stopping [51]. EEG has the potential to be an
effective means for the prediction of FOG in our study, with
sensitivity and accuracy around 80% using power spectral
or wavelet energy as a single feature. Besides, there is a
possibility to increase the transition period to provide enough
window time for signal processing as well as a follow up
treatment.

VI. CONCLUSION

This study demonstrated the potential of the EEG features
extracted using both Fourier and wavelet analysis in giving
more insights into the pathophysiology of Freezing of Gait
in PD. Results also show the advantage of using wavelet
analysis in extracting EEG basic feature, energy, comparedto
Fourier analysis, providing a better indicator in classification
system. This finding may be due to its representation of
signals in three dimensions (amplitude, frequency and time)
compared to Fourier (amplitude and frequency), which is more
convenient for non-stationary EEG signals. However, it was
less differentiated in coherency and phase synchrony, when
computation of the Fourier coefficients were done in a short
time window shifting through the time line, capturing the
entire time-frequency of the signals.

Different aspects of the EEG signal, when combined, may
provide more significant information, leading to a better clas-
sification of the signal. Future work will include dimension
reduction of the features highlighted, further exploration re-
garding the location of electrodes, and investigating different
classification methods for better performance of the system. It
is hoped that such approaches may lead to clinical translation
with device capable of sufficient computational cost and time
processing.
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