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Analysis and Prediction of the Freezing of Gait
using EEG Brain Dynamics
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Abstract—Freezing of Gait (FOG) is a common symptom in the
advanced stages of Parkinson’s disease (PD), which signéitly
affects patients’ quality of life. Treatment options offer limited
benefit and there are currently no mechanisms able to effeately
detect FOG before it occurs, allowing time for a sufferer to
avert a freezing episode. Electroencephalography (EEG) fefrs

a novel technique that may be able to address this problem.

In this paper, we investigated the univariate and multivariate
EEG features determined by both Fourier and wavelet analys
in the confirmation and prediction of FOG. The EEG power
measures and network properties from 16 patients with PD
and FOG were extracted and analyzed. It was found that both
power spectral density and wavelet energy could potentiall act
as biomarkers during FOG. Information in the frequency domain
of the EEG was found to provide better discrimination of EEG
signals during transition to freezing than information coded in the
time domain. The performance of the FOG prediction systems
improved when the information from both domains was used.
This combination resulted in a sensitivity of 86.0%, specifiity

The manifestation of FOG is intimately related to the exter-
nal environment of the individual. Several specific scergri
have been found to initiate FOG, including dual taskingspas
ing through doorways or crowded areas, as well as stress and
anxiety. Together, the multifactorial nature of these gers
indicates a multisystem deficit in FOG, in which impaired
information processing across cognitive, affective, armtan
domains leads to overwhelming inhibition over the braimste
structures that control gait [4], [5]. This proposal hasrbee
supported by the results of functional neuroimaging [§]-[8

Since dopaminergic replacement therapy only partialky-all
viates FOG, different strategies have been developedjgeri
alternative neural circuits in behavioral control. Sonsattsory
cues have been found to improve walking, -with visual cues
offering the strongest influence, followed by tactile, eivioal
and auditory cues [9]. A recent investigation on the effdct o

of 74.4%, and accuracy of 80.2% when predicting episodes of visual cues using laser on 7 PD patients with FOG showed

freezing, outperforming current accelerometry-based tots for the
prediction of FOG.

that on-demand cueing (only given when FOG episodes were
observed) is more efficient for reducing the duration of FOG

Index Terms—biomedical signal processing, electroencephalo- periods than continuous cueing [10], which indicates the

gram, freeing of gait, movement disorders, Parkinson’s disase.

I. INTRODUCTION

importance of a FOG detection system.

While various methods have been investigated to detect
the onset of freezing, none of these techniques seem able
to reliably detect FOG [11]-[15]. To predict the onset of

REEZING of Gait (FOG) is a highly disabling symptomfreezing at the earliest time before the actual FOG episodes
that affects approximately one quarter of patients withS oppose to detection, we have used EEG due to its ability

Parkinson’s disease (PD) in the early stages and over twasthito measure dynamic physiological change in the brain prior
in the advanced stages of the disease[1]. Clinically, FOG t® the occurrence of movement disturbances. Using EEG,
defined as dbrief, episodic absence or marked reduction opoth cortical and subcortical activity can be studied tigtou

forward progression of the feet despite the intension tckival the time-varying changes in certain spectral bands, which
[2]. Balance impairment and falls due to sudden FOG oftéiso allow insights into the mechanism of FOG. Finally, the
develop into one of the chief complaints among patients wigiortability and relative ease of use of EEG make it far more

PD and also often lead to falls, which are associated withugeful for the mobile collection of brain activity data.

high morbidity and mortality in PD [3].

Manuscript received April 07, 2014; revised September 1&l42and
November 03, 2014; accepted November 23, 2014. Date ofqauioin ; date
of current version December 10, 2014.

Wavelet decomposition based features have been developed
and show the potential of EEG signals as a bio-marker for
detecting FOG [16]. In this study, we attempted to find highly
discriminating features by investigating the performainée
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domain, and the performance of univariate and bivariate EEG
measurements in detecting FOG in PD patients. Two inter-
related categories of EEG measurement were examined: power
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may also disclose critical aspects of the functional cotiviec

of neural networks during a freezing episode. Some classic
features such as power spectrum, centroid frequency and
statistical parameters were also computed, as well as more
recently developed features such as entropy, cross ctiorgla
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coherence, phase-locking value and weighted phase lag.indeeen used in the training process, were also taken from the

Multilayer perceptron neural networks (MLP-NN) classifiepther five patients (516 samples, 172 in each class) to examin

was employed for FOG detection, concentrating on the tratiie robustness of the system in classifying the EEG signals

sition period between normal walking and an overt FOGom out-group patients. Low frequency noise, high frequen

episode. noise and 50 Hz line frequency noise were eliminated using

band-pass (0.5-60 Hz) and band-stop (50 Hz) Butterworth

lIR filters. Ocular and muscular artifacts were removed gisin

Stein’s unbiased risk estimate thresholding based on whavel
The study included sixteen patients ranging in age frotransforms.

56 to 78 years (mean: 64 years, std: 7.25 years) with the

mean Hoehn and Yahr stage when "off” medications over night IIl. FEATURE EXTRACTION

was 2.34+ Q.73 and the mean of the Unified Parkinson’ﬁ' EEG Linear Univariate Measurements

Disease Rating Scale Il stage when "off” was 40:£02.21. ) L

All of them had a FOG history with different severity and ~OWer spectral density (PSD), which is widely used and

frequency. The research protocol was approved by The HunitFcessfully applied to characterize signals in a systhows

Research and Ethics Committee from the University of Sydnggfe §trength of the energy as a functl_on of freql_Jency. It |q$pl

before data collection began. The experiment took placken gtationary process dur|_ng the t!me WlanW. Wh',le EEG S|gqal

Parkinson's Disease Research Clinic at the Brain and Mifii€ known as non-stationary signals with non-linear behavi

Research Institute, University of Sydney during a one weékol: fragments of EEG with length up to 290 ms can be

period. A series of a standardized timed up-and-go taske witated as stationary [20]. _

performed and all trials were video recorded for scoring. ! this study, the spectra are calculated via Welchs method
éing a 516 point Fast Fourier Transform (FFT) and periodic

Several researchers have shown that information on E i ind th | £50 %. The durati f
signals relating to mental tasks or the physiological ctoli amming windows with an overiap o 0. *he duration 0
stationary fragments is assumed to be 110 ms with the

can be tracked using only a minimum points of measureméHF

[17], [18]. Fewer channels are clearly preferred for patieﬁatmphlngtfredquenqy SOOHZ' ;)I’o lelltmlnate mter-md:wd;;;da
ease and to limit noise and artifacts. Moreover, it redubes gnter-electrode varnance in absolute measurements, PO

cost in signal processing, feature extraction and claaific spectrum was normalized by expressing each power spestral a

process; and makes the setting up of the system much ea$i Iercentage of total power in a frequency_wmdow 0f 0.5Hz-
and faster. OHZ and in all electrodes. EEG bands of interest were delta

In this study, the EEG was recorded using a 4-chanridr® H2), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz),

wireless EEG system with gold cup electrodes which Wei"'@;:j gta;]mma (30-60 HT)' late the shift of th ter of it
placed on 4 scalps locations based on their roles in perce urinermore, we caicufate the shitt of the center of gravity

tual and control movement (O1-visual, P4-sensorimotarraff 0? frequency band based on this normalized power spectrum,

dance, Cz-motor execution and Fz-motor planning). Bipolgrpectral Centroiq I_:reqqency (SCF). It has be_en reported tob
EEG leads were used to acquire data from central zero ( able of classifying different types of EEG in variousitiea

and frontal zero (Fz) with the reference electrode placed e\ hditions [21] [22] and is defined as:

FCz, and from occipital one (O1) and parietal four (P4) with S fix P(f)

the reference electrode at T4 and T3, respectively. The EEG SCF = S P(f) (1)

signals were amplified with common rejection rati®5 dB,

sampled at a rate of 500 Hz, and band-pass filtered betwee@Ver the past few decades, wavelet analysis has been devel-
0.15 and 100 Hz. oped as an alternative and improvement on Fourier analysis.

Overall 5.5 hours of data were collected from the stafl@n @dvantage in analyzing physiological systems is p@ea

dardized timed up-and-go test and 404 FOG episodes, V\}ﬂ jty to detect gnd analyze non—stationqrity in sign.alsl _a':tg

a duration between 1 sec and 220 sec, were labeled 'f ted aspect like trends, bre_akdo_vvn pomt_s, and discoity;
two clinicians specializing in movement disorders. Twoesth sihce _Wavel_ets are v_veII localized in _bOth t|_m§ and frequency
episodes were determined based on this period: transitf&%mam: Unhlfe Fourler transform which is limited to a sehle
episodes which cover a period between 5 to 1 seconds befSigle smusmdgl function, wavelet_transform generatesa
freezing, and normal walking which refers to a period of parameter family of Wa"‘?'et functiom, ,(¢) by sca!mg(a)
second after freezing to 5 seconds before the next freezggid _shn‘tlng(b) the function, so that _the_ correlation called
period. The distribution of FOG among the patients we htinuous wavelet transform (CWT) is given by [23].

Il. METHODS

not equal: 3 patients had between 6 and 10 episodes during o0 1 t—b
testing and the remaining 13 patients experienced moreliban CWT(a,b) = / (1) N (
events. A total of 1902 one second duration samples of three > lal
episodes (normal walking, transition, FOG) from all patsenwith (*) denotes the complex conjugation.
were included with each episode contributed evenly (634The development of wavelet-based signal compression al-
samples). Data from eleven patients were randomly chosgorithm led to the invention of the fast discrete wavelet
for training and testing (consisting of 1386 samples, 462 transforms (DWT) which removes redundancy in the signals
each class). Another set of testing data files, which havemeand simplify the numerical calculations. In DWT time-schle

)dt )

a
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parametersi a) are sampled on a dyadic grid with scalesarrow spectral band and an extended time domain made it
a = 27 (reciprocal of frequency) and positiohs= 27k (time more suitable for extracting information in frequency dama
localization), so that DWT is defined as, [27]. It is equivalent to a complex sinusoid with Gaussian
envelope and can be written as [28]

1 t— 27k
DWT(j, k) = : z(t — ). 3 _ .2
(.] ) \/m t;m ( )dj( 2i ) ( ) w()(t) _ %6327”%677. (6)
In the multi resolution analysis, signal¢) with maximum . o
cut-off frequencyf,, is split into two components using lowB- EEG Non-Linear Univariate Measurements
pass filter and high pass filter and is down sampled by 2 toBrain signals have been known as the output of a nonlinear
provide the approximation signals; and the detail signal®; system. Consequently, various measures which charagteriz
with lower cut-off frequency band)[: f,./2] and upper cut-off the nonlinear behaviour of EEG signals have also been de-
frequency bandff,/2 : f.], respectively [24]. Based on theveloped. In this study, entropy was used as an index of EEG
Nyquist criterion, maximum cut-off frequency is deternmdnecomplexity or irregularity based on Shannon’s Information
by fn=f,/2(+1) wheref, is the sampling frequency of theTheory. The power spectral entropy (PSE) of EEG signis
original signal and/ is the level of decomposition. Thedefined as:
approximation is subsequently decomposed and this process
is continued until the target level is achieved.
The wavelet decomposition for a given EEG signét) at

scaleg=1,2,...,J and time pointk then could be written as

fn
PSE(z) = - _ PilogP, ©)

i=fi

where P; is the normalized power density from the signal’s
x(t) = ZCJ,WJ,k(t) + Z Z d; k5 (%) (4) spectrum so tha}_ P, = 1 while f; and f;, are the frequency
k k j<J band of interest. Larger entropy values suggest a greater

wherec; ., d; 1, ¢;.x(t) andy; . (¢) are the approximation co- co_mple?qty. The Wavelet_ energy entropy/(£ E) were found
efficients, the detail coefficients, scaling function andelat  USing similar formula, with
functions, respectively. Daubechies (db4) wavelet thatdesen E;

found as properly representing EEG signals and spikes [25] P= Er ®)

was selected as wavelet function. in which E; refers to the energy of signals g frequency

With the EEG sampled at 500 Hz, a good match to tg,ng of decomposition andi; refers to the energy of all
standard clinical EEG subbands can be achieved using a fBuency bands of decomposition.

level decomposition as can be seen in Table 1. Reconstnuctio
of these signals which are decomposed into five constitught EE Bivariate Measurements

EEG subbands is depicted in Fig.1. There is a growing interest in the study of oscillatory

TABLE | rhythms and their synchronization related to the dynamic
FREQUENCYBANDS CORRESPONDING TODIFFERENTDECOMPOSITION organization of co_mmum(_:at|0r_1 in the nefYOUS system. They
LEVELS have been associated with diverse functions such as motor
activity, attention, memory and emotion. This was obtaibgd
Decomposed signals Frequency bands (Hz) DecompositioalLev  joining signals from multiple channels to detect the aliera

D1 125-250 1 (noises) : . . .
D2 62.5-125 2 (noises) gf t_he fung_tlpnal connectivity in the brain related to diffat
D3 31.3-62.5 34) rain con itions. o _
D4 15.6-31.3 48) In this study, quantification of neural correlation was done
D> 78156 5¢) based on the cross-correlation function, defined as [30]
D6 3.9-7.8 6¢)
A6 0-3.9 6 0)
Ray(k) = Elz(n)y(n + k)] 9)

In wavelet analysis, the energy of signals which correspoMtierex(n) andy(n+k) are two joint signalsf: is the number
to PSD, wavelet energy (WE), can be partitioned at differeff time units that the signaj(n) is lagged in regards t&(n),
levels of wavelet decompositiofj = 1,...I) according to andE[] is the expectation operator. o
Parseval's Theorem, and is expressed as a function of th&ross Power Spectral Density(CPSD) as the distribution of

scaling and wavelet coefficient [26]: power per unit frequency is defined as
Ep = / F@)Pdt =" e+ ldkl> (5) Poy(f) = D Ruy(k)e 7+ (10)
& & j<J k=—oo

Corresponding to SCF, we also calculated Centroid ScaleRatio of CPSD to the product of the related auto-power
(CS) based on the CWT scalogram to show the shift of tﬁ@ectralldensnms (APSD) shovys the coherenpy, a measaoteme
center of gravity of frequency band. The CWT was chosélf @mplitude and phase coupling, and is defined as
since it has a better frequency (scale) representation amdp | Pey ()]

to the DWT. We used the complex Morlet wavelet due to its Canl) = Poo(F)Pyy () (1)
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Fig. 1. Decomposition of EEG into detail (d1-d5) signalsatetl to five standard clinical EEG subbands by db4 waveletljest 6 shows the amplitude
and frequency alterations preceding and during freezingodp. Movement amplitude is increased preceding the ifrgezpisode.

Coherency function is a function of frequency and can be Corresponding to a similar concept in Fourier analysis,
used to analyse which frequency of two sets of time serilee autocorrelation function of the wavelet transfornmatio
data are coherent. While correlation emphasizes the sityila produces a wavelet power spectrum (WPS) which describes
of waveform between two signals and gives the informatiche power of the signals(¢) at a certain time; on a scales:
on their time coupling, coherency measures the stability of .
that similarity [31]. Coherence is defined as the modulus of WPSi(s) = Wi(s)Wi(s)". (13)
the coherency, also called the magnitude squared coherencehe extension of the univariate WPS to a comparison of
(MSC) and typically estimated by averaging over severglo time seriest andy at time shift indexi and scales with
epochs. their wavelet transform coefficient¥,, andW,,, the wavelet

Analysis on the stability of phase shift over the specifiegyoss spectrunit’C'S;(s), is defined as
time interval also provides measurement of phase differenc

between two signals. Detecting this phase-locking when the WSy, (s) = S(Wy, ()WL (s)) (14)

phase difference is constant using correlation and coberen ! ! vi

can be problematic since they are affected by the amplitugdere S is a smoothing operator. The interaction between

component which can be noisy or uncorrelated. signalsz and y at the given frequency is measured by the
Weighted Phase Lag Index (WPLI) was calculated to megroduct of two spectra expressed by wavelet coefficients of

sure this phase-synchronization. Proposed by Vinck et2j| [3the time scale representation of EEG sub-bands.

it has been demonstrated as reduced sensitivity to noiseAnalogous to Fourier-based coherence, wavelet coherence

increased capacity to detect changes in phase synchrionizais defined as the amplitude of the WCS normalized to the two

and is not affected by volume-conducting correlated saurcgingle WPS:

of interest. WPLI is defined as — WCS,y,(s)
_ P{S{X3H _ [P{S{X}H sgn(S{X D} wyi(8) = ‘ :
®= P P{|s{gX}|} - (12 VSUWPSs ()2 S W PS,(5)

Wavelet analysis has been proposed in estimating the timel-0 measure phase synchrony based on wavelet t(r;i)sform
varying coherence among non-stationary signals includi ase Locking Value (PLV) proposed by Lachaux et al. [34] '
neural signals since FFT is incapable of providing tempar, hich has been also called as mean phase coherence [35] V\'/as
structure information of signals. While a real wavelet flimc used in this study, defined as ’
has been used for detecting peaks and discontinuitiesnifo '
tion about the difference of phase can only be extractedjusin 1 | X ot
a complex wavelet function. Moreover, it is a better method PLV, = N ZNGJ ") (16)
for capturing oscillatory behaviour. In this study, we used n=1
complex Morlet wavelet which has been proved provided thehered(¢, n) is the phase difference between the signals which
best time-frequency resolution in the EEG analysis contparean be derived from the angles of their wavelet-coefficients
to other wavelet functions [33]. 01(t,n) —O2(¢t, n). Just like WPLI, the value of PLV is always
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TABLE Il
CORRELATIONANALYSIS OF NORMALIZED POWER SPECTRALDENSITY AND NORMALIZED WAVELET ENERGY BETWEEN NORMAL WALKING (NW)
AND TRANSITION TO A FREEZING OF GAIT(TR)

Power Spectral Density Wavelet Energy
Lead Frequency NW TR NW vs TR NW TR NW vs TR
[ 0.0868+ 0.0595 0.0816+ 0.0743 * 0.0051+ 0.0094  0.0082+ 0.0373 *
0 0.08724+ 0.0565 0.0814+ 0.0716 * 0.0005+ 0.0012  0.0003t+ 0.0007 *
o1 «a 0.0643+ 0.0361  0.0575+ 0.0459 * 0.00074+ 0.0018  0.0004+ 0.0029 Kk
Ié] 0.0691+ 0.0375  0.0426+ 0.0252 * % % 0.0005+ 0.0017  0.0004+ 0.0032 * % ok
v 0.0415+ 0.0330 0.0160+ 0.0159 *ok 0.0003+ 0.0012  0.000A- 0.0081 * ok
[ 0.1436+ 0.0837  0.092G+ 0.0652 *ok 0.0133+ 0.0536  0.0068+ 0.0333 *k
0 0.1456+ 0.0770  0.0949t+ 0.0632 *% 0.0007+ 0.0019  0.0003t 0.0009 *
P4 @ 0.1104+ 0.0444  0.0750Q+ 0.0445 * k% 0.0013+ 0.0030  0.0006t+ 0.0041 * % ok
B 0.1428+ 0.0711  0.1013+ 0.0744 * ok k 0.0013+ 0.0040  0.0005+ 0.0030 * ok
vy 0.1033+ 0.0827 0.0663t+ 0.0668 * 0.0011+ 0.0025 0.0006+ 0.0039 *%
6 0.0439+ 0.0552  0.1466+ 0.1070 * ok % 0.0014+ 0.0023  0.0052+ 0.0120 *
0 0.0435+ 0.0536  0.1443+ 0.1048 * ok k 0.00024+ 0.0006  0.0008+ 0.0015 *
Cz o 0.0301+ 0.0349  0.0972+ 0.0699 * ok k 0.00024+ 0.0004  0.0003t 0.0006
B 0.0200+ 0.0158  0.0473t+ 0.0326 * % % 0.0001+ 0.0001  0.0004- 0.0002 *
v 0.0024+ 0.0022  0.003%+ 0.0055 0.000Gt 0.0000 0.0004 0.0009
o 0.0021+ 0.0025 0.0042+ 0.0094 0.000H 0.0002 0.0003t+ 0.0016 *
0 0.0019+ 0.0023  0.004G+ 0.0089 0.000Gt 0.0000  0.000Gt 0.0002
Fz a 0.0012+ 0.0014  0.0025+ 0.0054 * 0.0000+ 0.0000  0.000G+ 0.0001 *
B 0.0003+ 0.0004  0.0009t+ 0.0017 * 0.0000+ 0.0000  0.000G+ 0.0000 *
vy 0.0000+ 0.0000 0.000H- 0.0006 * 0.0000+ 0.0000 0.000G+ 0.0001 *

*=p<0.05and r< 0.3
++ =p < 0.05 and 0.3< r < 0.4
x*x+ =p<0.05and r> 0.4

between 0 and 1 with a value of 1 signifying perfect synchrony Validation set was used as a stopping criterion to avoid
in which one signal perfectly follows the other. overfitting as well as error goal 0.01 in single MLP-NN with

4 to 12 hidden layer neurons. Each feature was trained and
tested fifty times based on the repeated random sub-sampling
) e and the mean result was recorded. The sensitivity, speygifici

In order to build a faster and better classification SySte'gccuracy and area under the Receiver Operating Chardicteris

we selected the most relevant univariate features using NQfe of classification system were calculated to measwge th
parametric statistical analysis - the Wilcoxon Sum RanK'Te?jerformance of the features

Only features with significant statistical differencesvioetn
those groups of datg{value <0.05) were chosen for further
process. IV. RESULTS
Classification data sampled using selected features Wal€e EEG Linear Univariate Measurements
based on three layers MLP-NN with 56%, 25% and 19% of the
data, randomly split, used for training, validation anditeg

; : f
respectively. Levernberg Marquardt algorithm was chosen e )
a training method for its speed and stability [38]. Know%e discriminative valuep(value <0.05) was found in almost

as a combination of the Gauss-Newton technique and tﬂl freql_Jency bands as can be seen in Table 2. However, when
steepest descent method, the Levernberg-Marquardt tigori effect size was taken into account, the alpha frequency mand

essentially is an iterative technique that located the mimn parietal appeared as the most important feature signifiéid wi
of an objective error function: the decreasing of normalized PSD and WE during transition

to FOG compared to normal walking (PSD, z = 7/9&0.05,
- r = 0.40; WE, z = 8.36p <0.05, r = 0.42). In addition, there
E(w) = Zef(w) = I (w)? (17) were significant increases in beta power in occipital (PSD, z
=t = 7.98p <0.05, r = 0.40; WE, z = 9.57 <0.05, r = 0.48),
wheree?(w) = (ya; —y;)? is an individual error, the difference parietal (PSD, z = 7.9% <0.05, r = 0.40; WE, z = 8.87
between the desired value of output neuggnand the actual <0.05, r = 0.45) and central leads (PSD, z = 719&0.05,
output of that neurony;, and w is the weight vector. The r = 0.40; WE, z = 2.63p <0.05, r = 0.13), along with theta
Levenberg-Marquardt algorithm is used to find the new weighttivity in central (PSD, z =-12.8p <0.05, r = 0.92; WE, z
vectorwy; to reach the optimum performance of the systers: .5.27,p <0.05, r = 0.27 ).
T T -1 Common patterns shared by Fourier transform based fea-
Wikt = we = (S f(we)) (T T+ D) (18) tures and W&F\)velet transform bgsed features clearly showed i
where J;, is the Jacobian of functiorf(.) at wg, A is the the shifting centroid frequency in the beta, alpha and theta
learning rate and is the identity matrix. frequency band during transition and freezing episodeg Th

D. Statistical Test and Classification

In the statistical analysis of PSD and WE for differentiatio
two EEG conditions, normal walking and transition to FOG,
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beta frequency band stands out as the most affected freguen: Alpha
band in transition to freezing with the most significant shif
happening in the central lead (SCF, z = 11.04<0.05,

r = 0.56; CS, z = -8.33p <0.05, r = 0.42 ) while the
fronto-central cortical region has been more affected thar _
the parieto-occipital region. When compared to the walking g
period, episodes of freezing were associated with sigmifica =
shifting in the theta frequency band with the largest shift o
centroid frequency in the frontal leads (SCF, z = -4»110.05,
r=0.21; CS, z = 4.55p <0.05, r = 0.23).

B. EEG Non-Linear Univariate Measurements %

The result of entropy analysis shows a decrease of entrop a2 ‘ A
in most frequency bands and electrodes during freezingibf ga
The most significant change during transition to freezing wa
detected in the beta frequency band both at central (PSE, z -
11.01,p <0.05, r = 0.56) and frontal (PSE, z = 8.28<0.05,

r = 0.42 ). This trend was continued in the onset of freezing

with lower effect size (Central: PSE, z = 4.35<0.05, r = _ L _ , _
Fig. 2. Phase synchronization alterations during freenifngait measured us-

0.22 ; Frontal: PSE, z _= -5.44,<0.05,r = 0'28)'_ ing Weighted-Phase Lag Index and Phase Locking Value sheviutictional
The entropy analysis on wavelet energy which measurnes between motor and visual in the high frequency EEG.

the temporal regularity of energy in each frequency banad als

revealed the loss of complexity during transition in most of

all the frequency bands and electrodes with the beta ba§@tures. Both sub-band power spectrum and sub-band wavele
appearing as the most affected frequency band. There wa8ngrgy features gave better results compared to theirigiear
significant decreased regularity of gamma activity in the-cemode, cross power spectrum and wavelet cross spectrum.
tral (WEE, z = 11.04p <0.05, r = 0.56) during the transition, While our interest is more in the result of in-group testing,
along with a decrease in the beta band (WEE, z = 11p04since the translation of this method into a real device well b
<0.05, r = 0.56). While these entropy were then increased@stomized for each user due to variation FOG characesisti
the onset of the freezing period, they were still signifibant@cross patients, it is interesting to point out that the cemee
lower compared to walking, unlike the diminishing of allbased features poorly performed when it was applied to out-

—— phase synchronization increase

---. phase synchronization decrease

irregularity at the occipital and parietal leads. group patients. It shows that multivariate based features a
less robust against the inter-individual variability ccamgd to
C. EEG Bivariate Measurements univariate based features.

. The result of the experiment also shows that Fourier arslysi
Fig. 2 shows the results from the phase synchrony anal- . L
. i o L rovided better result compared to wavelet analysis in the
ysis obtained from electrodes pairs in three mid-high fr

quency bands during freezing of gait. Both parietal-froata extraction of the features related to freq_uency, entropyg a
- : . . phase synchrony. However, the changes in the wavelet energy
occipital-frontal cortices connections in the beta and ig@m

. : were found to be the best indicators of transition to FOGh wit
frequency band are strongly synchronized in phase acaprdin

to WPLI analysis. In contrast, when PLV analysis was applie ensn.lvny. and accuracy of testing obtained in the expeqm
L o . mvolving in-group patients at 86% and 80.2%, respectively
phase synchronization decreased significantly in the gamma

frequency band in both pairs of electrodes location. e using of wavelet cross spectrum also resulted in a better

In the Coherency analysis, both MSC and WCO indicatedaé:curacy compared to cross power spectrum in the experiment

- . . o . related to in-group subjects and has been proven as to be more
significantly different coherency during transition todréng robust when tested against out-aroun patients. maintaitie
in parieto-occipital pairwise of electrodes in the thetpha 9 groupp ' @

0,
and beta frequency band as illustrated in Bignd Fig.4. We accuracy at 77%.
observed no significant change of coherency in parietatiaien
cortices connection. Pairwise fronto-central shows afien V. DISCUSSION

of coherence in all frequency bands detected using WCO andrpg present study compared several Fourier analysis based
in three lowest band frequency using MSC. Amongst all thgyres with their wavelet analysis counter-part and aepl
changes, the most significant one is in the theta frequengyir role in neural dynamics related to freezing of gait B. P
band at this pairwise of electrode (MSC, z = -81X0.05, oy finding that theta oscillations in human cortex increase
r=0.41; WCO, z = -5.05p <0.05, r = 0.26). during transition to freezing and remain high during freegi
o o in the central region (see Table II-Power Spectral Denisity)

D. Statistical Test and Classification consistent with multiple studies suggesting that there is a

The performance of features extracted through univariateationship between FOG, specific deficits in cognition and
analysis is generally stronger than bivariate analysisesdbasmpairment in the motor planning mechanism [39]-[43]. The
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TABLE Il

CLASSIFICATION RESULTS OF PROPOSED FEATURES USINBLP-NN IN DETECTING TRANSITIONS SECOND BEFORE FREEZING FROM NORMAL WALKING

In-group (11 patients) Out-group (5 patients)

Features Training Testing Testing
Se% Sp% Ac% Au% Se% Sp% Ac% Au% Se% Sp% Ac% Au%
F1 8481 8489 8483 8561 79.69 7798 78.68 79.14 7586 765.30.62 71.52
F2 85.12 8229 8367 84.12 81.00 7896 80.00 79.40 68.51 583.66.08 74.53
F3 83.46 8254 83.00 8195 7945 7694 78.10 79.31 73.02 379.56.28 74.30
F4 81.31 8149 8171 8144 7488 7476 74.88 75.88 68.40 768.68.56 67.42
F5 7192 7714 7458 7486 70.75 7173 70.75 6941 66.16 872.88.42 67.23
F6 63.70 80.43 7210 71.06 6420 8122 72.88 71.18 54.88 987.00.99 69.04
F7 89.28 7821 83.75 8355 86.00 7443 80.20 79.73 73.19 680.76.67 75.88
F8 85.82 80.82 8329 8354 7935 7381 76.47 7575 68.77 876.92.87 71.27
F9 7751 7319 7529 7546 7153 67.00 69.32 70.10 75.09 567.01.07 70.14
F10 78.73 87.22 83.00 8466 7276 8289 7742 7720 69.931685.77.55 77.80
F11 75.66 78.88 78.67 77.54 66.33 67.71 69.42 6851 57.517253.52.16 52.37
F12 70.02 7415 72.07 7231 60.80 66.13 6247 6141 73.07 4254.52.13 52.52

Se: Sensitivity; Sp:

Specificity; Ac: Accuracy; Au: Area amdhe Receiver Operating Characteristic curve

F1: Power Spectral Density (PSD); F2: Spectral Centroidjieacy (SCF); F3: Power Spectral Entropy (PSE)

F4: Cross Power Spectral Density (CPSD); F5: MagnitudeaBgl Coherence (MSC)

F6: Weighted Phase Lag Index (WPLI); F7: Wavelet Energy (WE)
F8: Centroid Scale (CS); F9: Wavelet Energy Entropy (WEE)
F10: Wavelet Cross Spectrum (WCS); F11: Wavelet Coherewte(); F12: Phase-Locking Value (PLV)
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analysis of the frequency shift and coherency based on M8Ge to dependency to the physical movement of the body,
and WCO provided more support to the importance of fromccelerometers could not differentiate between freezimg) a
tocentral activity in FOG (see Fig - Fig. 4 in which the voluntarily stopping [51]. EEG has the potential to be an
frontocentral pairwise is significant in most of all freqagn effective means for the prediction of FOG in our study, with
bands). sensitivity and accuracy around 80% using power spectral
The entropy analysis of the frequency domain based on the wavelet energy as a single feature. Besides, there is a
changing of power spectral shows an increase of regularfigssibility to increase the transition period to providewgh
on nearly all frequency bands and most electrodes duringndow time for signal processing as well as a follow up
transition and this continued in the freezing period. Tfae treatment.
we can infer that brain activity is "less complex” when pat&
undergo change from their normal walking state to freezing VI. CONCLUSION
of gait. The alteration in the information processing dgrin This study demonstrated the potential of the EEG features
this stage is possibly due to an inactivation of previouskxtracted using both Fourier and wavelet analysis in giving
active neural networks as a result of the impairment of thmore insights into the pathophysiology of Freezing of Gait
more "executive” functions of the brain. This result is alsin PD. Results also show the advantage of using wavelet
aligned with the general "loss of complexity” behaviour iranalysis in extracting EEG basic feature, energy, comptared
other diseases and states of the brain including epilep8y [4Fourier analysis, providing a better indicator in clasatficn
Alzheimer’s [45], and autism [46]. system. This finding may be due to its representation of
While there are clear differences in the result of phasignals in three dimensions (amplitude, frequency and)time
synchrony calculation using WPLI and PLV, both are imompared to Fourier (amplitude and frequency), which isemor
agreement with the increase of beta synchronization. Thisnvenient for non-stationary EEG signals. However, it was
result is aligned with the work of E. Heinrichs-Graham dess differentiated in coherency and phase synchrony, when
al. [47] who used magnetoencephalography (MEG) and foundmputation of the Fourier coefficients were done in a short
beta desynchronization prior to and during movement orsettane window shifting through the time line, capturing the
well as increased gamma activity in Parkinson’s disease. Téntire time-frequency of the signals.
analysis on the primary motor cortex arm area by HemptinneDifferent aspects of the EEG signal, when combined, may
et al. [48] also found the exaggerated coupling between bepaovide more significant information, leading to a bettersel
phase and gamma amplitude in those areas in PD patiestication of the signal. Future work will include dimension
This coupling has been reported in relation to movemergduction of the features highlighted, further explonatie-
preparation and control of different cognitive functionslud- garding the location of electrodes, and investigatingedéht
ing memory and attention. Interestingly, we also noticeal tltlassification methods for better performance of the system
significant coherence in the gamma frequency band at pairwis hoped that such approaches may lead to clinical traaslati
01-Cz and Cz-Fz, detected using wavelet coherence. with device capable of sufficient computational cost ancetim
The comparison between power spectral entropy based pocessing.
the signals dynamic in the frequency domain and wavelet
energy entropy based on the signals dynamic in the time REFERENCES
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