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Vitamin D plays various roles in normal
brain physiology, including modulating
synaptic plasticity.

Converging evidence suggests that
vitamin D deficiency affects multiple
brain processes, including cognitive
functioning, in both healthy people
and those afflicted with neuropsychia-
tric illness. The underlying mechan-
isms, however, are poorly understood.

Evidence suggests that vitamin D defi-
ciency impacts synaptic plasticity
through a plethora of avenues, includ-
ing L-type voltage-gated calcium chan-
nels and regulation of various
neurotransmitters, including NO.

An emerging concept is that vitamin D
deficiency may weaken the integrity of
PNNs, aggregates of the ECM,
through modulation of MMPs.

PNNs have been reported to play
essential roles in cognitive processes
such as learning and memory. As
such, dysregulation of PNNs is likely
to disturb neural-circuit function and
impair cognitive functioning.

Assessing the molecular mechanisms
that underpin the roles of vitamin D in
cognition is pertinent to informing pre-
ventive and intervention strategies for
persons with cognitive disturbances,
including patients with schizophrenia.
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Over a billion people worldwide are affected by vitamin D deficiency. Although
vitamin D deficiency is associated with impaired cognition, the mechanisms
mediating this link are poorly understood. The extracellular matrix (ECM) has
now emerged as an important participant of synaptic plasticity and a new
hypothesis is that vitamin D may interact with aggregates of the ECM, peri-
neuronal nets (PNNs), to regulate brain plasticity. Dysregulation of PNNs
caused by vitamin D deficiency may contribute to the presentation of cognitive
deficits. Understanding the molecular mechanisms underpinning the role of
vitamin D in brain plasticity and cognition could help identify ways to treat
cognitive symptoms in schizophrenia and other neuropsychiatric conditions.

Vitamin D and Cognition
Vitamin D deficiency affects nearly a billion people worldwide [1]. In addition to its established
roles in causing rickets and osteomalacia, the convergence of in vitro animal and epidemiologi-
cal research points to vitamin D deficiency as a candidate modifiable risk factor for a range of
neuropsychiatric and neurological diseases [1]. While definitive links remain to be substanti-
ated, vitamin D deficiency has been associated with vulnerability to various disorders including
schizophrenia [2], depression [3], attention deficit disorder [4], autism spectrum disorder [5],
and neurodegenerative disorders such as Alzheimer’s disease and dementia [6]. A common
thread to all of these disorders is impairment in cognitive functioning, which is also the most
salient predictor of functional outcome. Therefore, it is essential to identify risk factors that
operate at the early stages of disease, and to develop efficient primary treatment strategies to
delay or prevent cognitive disturbances. This review aims to outline recent developments in our
understanding of the physiological roles of vitamin D, and the impact of vitamin D deficiency on
the presentation of cognitive deficits. Furthermore, we discuss evidence indicating that vitamin
D deficiency may disturb properties of brain plasticity, which is likely to contribute to the
presentation of cognitive disturbances. Lastly, we expound on a novel hypothesis, suggesting a
link between vitamin D and PNNs, aggregate structures of the ECM.

Physiological Roles of Vitamin D in the Body and Brain
Vitamin D is a group of fat-soluble secosteroids that play important roles in the human body [7].
The two major forms of vitamin D are vitamin D3 (cholecalciferol) and vitamin D2 (ergocalciferol).
While both cholecalciferol and ergocalciferol can be obtained through dietary sources, vitamin
D3 is typically obtained through the synthesis of cholecalciferol in the skin from 7-dehydro-
cholesterol by UV radiation [8]. Cholecalciferol enters the circulation and is transported by the
vitamin D binding protein (VDBP) to the liver, where it is hydroxylated, resulting in the formation
of calcidiol [25-hydroxyvitamin D3 or 25(OH)D3], the major circulating form of vitamin D [8]. 25
(OH)D3 is then transported by the VDBP to the kidneys and other tissues where it is converted
by the mitochondrial enzyme 1,a-hydroxylase (CYP27B1), resulting in the hormonally active
from of vitamin D, calcitriol [1,25-dihydroxyvitamin D3 or 1,25(OH)2D3; Figure 1]. 1,25(OH)2D3 is
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Figure 1. Vitamin D Metabolism and Action in the Brain. Vitamin D3 (cholecalciferol) is obtained in the skin from 7-
DHC; a reaction that is facilitated by UV radiation. Cholecalciferol enters the circulation, transported in the blood by VDBP
to the liver, where it is hydroxylated, resulting in the formation of 25(OH)D3; the major circulating form of vitamin D. 25(OH)
D3 is then transported by the VDBP to the kidneys and other tissues where it is converted into the hormonally active from of
vitamin D, 1,25(OH)2D3. Both 25(OH)D3 and 1,25(OH)2D3 can cross the blood–brain barrier into the brain where 25(OH)D3

can be converted into 1,25(OH)2D3. This ability has been found to impact on many brain processes including cell
differentiation, neurotrophic production and release, neurotransmitter synthesis, intracellular calcium homeostasis, oxi-
dative damage prevention, neuronal structure function and metabolism, and finally cognitive functioning. Abbreviations:
1,25(OH)2D3, calcitriol; 7-HDC, 7-dehydrocholesterol; 25(OH)D3, calcidiol; VDBP, vitamin D binding protein.
responsible for most, if not all of the biological actions of vitamin D, through its binding to the
vitamin D receptor (VDR) [7]. While this process is well documented in organs other than the
brain, evidence suggests that the conversion of 25(OH)D3 into 1,25(OH)2D3 may occur in the
brain as well. Both 25(OH)D3 and 1,25(OH)D3 can cross the blood–brain barrier [9]. Further-
more, recent evidence suggests that the brain also has the necessary machinery for converting
25(OH)D3 into 1,25(OH)2D3. It has been observed that brain endothelial cells and neurons can
transform the inactive cholecalciferol into 25(OH)D3 [10]. This can then be metabolised into 1,25
(OH)2D3 by neurons or microglia before being transferred to astrocytes where it can bind to
VDR and initiate gene transcription or be inactivated when in excess [10]. Furthermore, it is
evident that 1,25(OH)2D3 can induce rapid nongenomic actions within the CNS, including
autocrine and paracrine actions, via a membrane receptor of vitamin D known as protein
disulphide isomerase family membrane (PDIA3) [10]. This effect is independent of the classical
actions of the VDR and the mechanism of action has received little attention in the CNS [11].

Evidence for a role of vitamin D in brain function began with autoradiographic findings of the
presence of VDR in the brains of experimental animals [12]. It is now widely accepted that VDR
is found in neurons and glial cells in most regions of the brain including the cortex (temporal,
frontal, parietal, and cingulate), deep grey matter (thalamus, basal ganglia, hypothalamus,
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hippocampus, and amygdala), cerebellum, brainstem nuclei, substantia nigra (dopaminergic
neuron-rich area), spinal cord, and ventricular system [13]. In the past decade, several studies
have shown that vitamin D influences cell differentiation [14], neurotransmitter synthesis [15],
neurotrophin production and release [16], intracellular calcium homeostasis [17], prevention of
oxidative damage to nervous tissue [18], and expression of genes and proteins involved in
neuronal structure, physiological function, and metabolism [19]. This legion of actions clearly
highlights a role for vitamin D in regulating cerebral function. Recently, vitamin D has emerged
as a likely candidate for modulating cognitive functioning in healthy adults.

Effect of Vitamin D Deficiency in Healthy Adults
Meta-analyses and systematic reviews have shown that vitamin D deficiency is associated with
cognitive difficulties in healthy adults [20–22]. Furthermore, observational studies have shown a
relationship between low vitamin D status and cognitive decline in elderly adults [23–28].
Llewellyn and colleagues [23] have suggested that vitamin D deficiency is associated with an
increased risk of cognitive impairment in the elderly population. Other work also supports this
finding, suggesting that those with vitamin D deficiency are more likely to attain a lower score on
the Montreal Cognitive Assessment (MoCA), a widely used screening assessment for detecting
cognitive impairment [27]. This effect remains significant when controlling for predictors (age,
sex, and education), and after accounting for the effects of exercise.

Following up on these findings, Dean et al. [29] examined whether supplementation of vitamin D
can lead to improvements in diverse measures of cognitive and emotional functioning in healthy
young adults, compared with controls. Contrary to the hypothesis of the study, the findings
indicated that vitamin D supplementation did not influence cognitive or emotional functioning in
healthy young adults. This finding is supported by other studies suggesting no relationship
between vitamin D and cognitive functioning in young to middle-aged adults [30–32]. However,
Petterson et al. [33] found that high-dose vitamin D supplementation significantly improved
performance on nonverbal (visual) memory, compared with low dose supplementation. This
effect was particularly pronounced among those who were vitamin D insufficient at baseline.
This finding aligns with other recent cross-sectional and longitudinal studies demonstrating
significant positive associations between vitamin D levels and nonverbal, but not verbal,
memory [34–36]. However, many questions remain and there is a need for further randomised
control trials to evaluate the effects of vitamin D supplementation on cognitive outcomes in
different populations.

It is possible that these discrepancies in the vitamin D literature can be attributed to cross-
sectional study designs, inadequate statistical adjustment, and heterogeneity in cognitive
function measures. Another possible explanation is variation across vitamin D deficiency
cut-off values used in different studies. There is controversy surrounding the formal definition
of vitamin D deficiency [37]. According to some authorities, including the Institute of Medicine,
persons are at risk of vitamin D deficiency at serum 25(OH)D3 concentrations �30 nmol/l [38].
Some argue that optimal levels of serum 25(OH)D3 concentrations are �50 nmol/l, and persons
below this level should be considered as high risk and targeted for treatment [39]. Similarly,
there have been some authorities that recommend serum 25(OH)D3 levels of 75–80 nmol/l or
higher [40]. However, these guidelines are generally based on skeletal health outcomes. It is
possible that these levels may actually be insufficient for maintaining optimum functioning of
other tissues and systems including the nervous system. Another possible reason for the
discrepancies among the aforementioned studies relates to the idea of cognitive reserve. This
concept has been proposed to explain the observation that some degree of neuropathology
can yield apparent manifestations in some individuals, but not in others [41]. It is possible that
Trends in Neurosciences, Month Year, Vol. xx, No. yy 3
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the relationship between vitamin D status and cognitive impairment is only observable in
participants with a lower degree of neural compensatory mechanisms, such as elderly people.
With this in mind, it is possible that deficient levels of vitamin D, occurring at key periods of
neurodevelopment, may interface with genetic risk, culminating in the expression of disease
state [42]. This notion is reinforced by a well-established relationship between vitamin D
deficiency and some neuropsychiatric disorders, particularly schizophrenia, wherein cognitive
disturbances are pervasive.

Vitamin D Deficiency and Schizophrenia
Schizophrenia is a group of neuropsychiatric disorders characterised by positive symptoms
(hallucinations and delusions), negative symptoms (depression, impaired motivation, and
affective flattening), and global cognitive deficits (impairments in attention, memory, disorgan-
ised thinking, and executive functioning). The development of schizophrenia is complex, driven
by genetic risks interacting with multiple vulnerability factors [42]. Vitamin D deficiency has been
identified as a plausible risk factor, impacting the development of schizophrenia at multiple key
periods of development.

Although the onset of overt schizophrenia typically manifests during adulthood, evidence
suggests that a considerable portion of its pathogenesis lies in early brain development,
including the prenatal period. A plethora of animal experiments have demonstrated that
transient prenatal vitamin D deficiency is associated with persisting changes in brain structure
and function [43], including evidence of altered dopaminergic function [44]; one of the key
clinical finding in patients with schizophrenia [45]. Furthermore, prenatal hypovitaminosis D in
rats causes dysregulation of 36 brain proteins involved in several biological pathways,
including oxidative phosphorylation, redox balance, cytoskeleton maintenance, calcium
homeostasis, chaperoning, post-translational modifications, synaptic plasticity, and neuro-
transmission in adulthood [46]. A follow-up computational analysis of these results revealed
that some of the identified dysregulated proteins are also disrupted in schizophrenia and/or
multiple sclerosis [46].

Low vitamin D during early life has also been identified as a risk factor for the development of
schizophrenia. For example, McGrath and colleagues reported an association between defi-
ciency of vitamin D in the first year of life and an increased risk of schizophrenia in men [47].
Supporting this, another study using dried blood samples from a Danish neonatal biobank
revealed that low concentrations of vitamin D in neonates was associated with a twofold
increased risk of developing schizophrenia later in life [48].

Vitamin D deficiency is prevalent also in those that have recently been diagnosed with the
disorder. In a case–control study, Graham and colleagues [49] measured vitamin D levels in 20
recent-onset patients with schizophrenia and 20 matched healthy participants. While there was
no significant difference between vitamin D levels of patients with schizophrenia and healthy
controls, lower vitamin D levels in the schizophrenia patients were associated with more severe
negative symptoms and overall cognitive deficits. Similarly, in a large cross-sectional study of
vitamin D levels in community-dwelling individuals with established psychosis, 49% (n = 158)
were vitamin D deficient, with only 14% (n = 45) meeting criteria for sufficiency [50]. A meta-
analysis performed by Valipour and colleagues [51] reviewed 19 studies published between
1988 and 2013. Of the 2804 participants, over 65% of the participants with schizophrenia were
vitamin D deficient. Findings from the majority of case–control studies on the serum levels of
vitamin D of patients with schizophrenia, compared with healthy controls, have also revealed a
significant inverse association between vitamin D status and schizophrenia [52]. A more recent
4 Trends in Neurosciences, Month Year, Vol. xx, No. yy
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study by Nerhus et al. [53] investigated vitamin D levels and cognitive function in inpatients and
outpatients with psychosis and matched controls. Schizophrenia was the most common
diagnosis amid those with psychosis. The participants were assessed by a cognitive test
battery, a clinical protocol (including Structured Clinical Interview for DSM-IV Axis I Disorders
and Positive and Negative Syndrome Scale), and a physical examination including vitamin D
measurements. Vitamin D deficiency was significantly associated with decreased processing
speed (i.e., Digit Symbol Coding) and decreased fluency (i.e., verbal fluency), even when age,
ethnicity, IQ, patient versus control status, and substance or alcohol abuse were controlled for.
These results indicate a potential association between adult vitamin D (AVD) deficiency and a
decrease in cognitive functioning, particularly in processing speed and verbal fluency, in
patients with schizophrenia.

About a third of patients with chronic schizophrenia do not respond to common antipsychotic
medication and require clozapine to reduce psychotic burden [54]. In a recent randomised
double-blind study, chronic clozapine-treated patients with schizophrenia received vitamin D
(14 000 IU weekly) or placebo for 8 weeks. Although supplementation with vitamin D was not
superior to placebo in reducing psychiatric symptoms or improving the metabolic parameters, it
was associated with a trend towards improvement in cognitive performance [55]. However,
further studies are required using larger samples and a longer duration of supplementation to
confirm any procognitive effects of vitamin D.

Given these observations, it is plausible to suggest that exposure to vitamin D deficiency at key
periods of development may contribute to the development of schizophrenia and moreover, the
manifestation of cognitive disturbances in adulthood. Furthermore, supplementation of vitamin
D may improve cognitive symptoms in these patients after diagnosis. However, despite this
increasing evidence, definitive causal relationships remain to be validated, and the exact
mechanism by which vitamin D impacts cognitive functioning is unknown. An emerging
concept, which could address this gap, is that vitamin D impacts brain function at the level
of the synapse, influencing synaptic plasticity, which in turn, may affect cognitive functioning.

Vitamin D and Synaptic Plasticity
Synaptic plasticity refers to the ability to generate new synapses, eliminate synapses, and alter
the electrophysiological, molecular, and structural properties of existing synapses in response
to experience. Synaptic plasticity is thought to be one of the key processes mediating learning
and memory [56]. Rapidly evolving research implicates vitamin D in the process of long-term
potentiation (LTP); a widely recognised mechanism of synaptic plasticity and an essential
element in information storage in the brain. LTP is described as the long-lasting enhancement
of synaptic efficacy as a result of tetanic stimulation in afferent neural fibres [57]. LTP is
dependent on a calcium (Ca2+) rise in the postsynaptic cell, through voltage-gated calcium
channels (VGCC) or N-methyl-D-aspartate (NMDA) receptors.

Prenatal vitamin D deficiency has been shown to alter genes involved in synaptic plasticity [58].
Almeras and colleagues [46] found two synaptic plasticity-related genes, drebrin and neuro-
modulin (also known as growth-associated protein-43; GAP-43), dysregulated in prenatal
vitamin-D-deficient rat brain. Drebrin is an actin-binding protein that changes the helical pitch
of actin filaments [59]. There are two isoforms of drebrin: drebrin E, which predominates in the
developing brain; and drebrin A, which predominates in the adult brain and is specifically
expressed in neurons [59]. During development, drebrin A expression in the brain parallels with
synapse formation, and dysfunction of drebrin A has been found to be altered in the dorsal
lateral prefrontal cortex in post-mortem brain of patients with schizophrenia [60]. It is possible
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that this dysregulation could account, in part, for the dendritic spine alterations that are seen in
these patients. Similarly, GAP-43 also plays an important role in synaptic plasticity, regulating
axonal growth, and neural network formation during development. Alterations in GAP-43
expression levels have been demonstrated in several brain regions of patients with schizo-
phrenia [61,62]. Of particular note, drebrin dysfunction has been implicated in impaired
cognition [63]. Taking together these lines of evidence, one might speculate that developmental
dysregulation of drebrin and GAP-43 through prenatal vitamin D deficiency might not only
perturb synaptic plasticity, but also contribute to the pathophysiology of schizophrenia and its
associated cognitive impairments.

As complementary evidence to the link between vitamin D and synaptic plasticity, supplemen-
tation of vitamin D has been shown to upregulate multiple genes essential for synaptic plasticity,
such as synaptojanin 1 and synaptotagmin 2 and calcium/calmodulin-dependent protein
kinase IId (CaMKIId). Vitamin D supplementation has also been shown to upregulate receptors
for several major neurotransmitters including dopamine, glutamate, and serotonin, which are
necessary for normal synaptic functioning [64]. Furthermore, according to Latimer and col-
leagues [64], vitamin D supplementation in rats increased neuronal excitability and mitigated
age-related cognitive decline.

There is strong evidence to suggest that vitamin D also plays a fundamental role in the homeo-
stasis of calcium-mediated activities in neurons [65]. In particular, it has been shown that
expression of L-type VGCCs (L-VGCCs) is associated with vitamin D signalling. Brewer et al.
[66] found that vitamin D downregulates mRNA expression of different subunits of L-VGCC. This
genomic action occurs in the nucleus, where the transcriptional activity of vitamin D is meditated
by the VDR. This notion was further supported by the fact that silencing the VDR increases the
expression of L-VGCCs in primary cortical and hippocampal neurons [67]. Vitamin D can also
influence intracellular levels of calcium through nongenomic actions. For example, vitamin D
rapidly activates protein kinases such as CaMKII, PKA, and PI3K, which then facilitate calcium
influx via L-VGCCs [68], and this action occurs via the membrane receptor of vitamin D, PDIA3. L-
VGCCs have been shown to exert many influences in the brain, including neurotransmitter
release, changes in neuronal excitability, learning, memory, and other physiological functions
[69]. Furthermore, dysfunction of L-VGCCs has been implicated in mental disorders, including
schizophrenia [70]. Recent findings from a genome-wide association study (GWAS) showed that
a risk allele in the L-VGCC channel gene (CACNA1C) was more common in schizophrenia than in
controls [71]. It has alsobeenshownthatL-VGCCs regulate not only the expression of GABAergic
parvalbumin-expressing interneurons but also the development of these interneurons [72].
GABAergic neurotransmission in the dorsolateral prefrontal cortex of patients with schizophrenia
has been found to be reduced in a number of studies (reviewed by Lewis and colleagues [73]). It is
suggested that alterations in GABAergic neurotransmission by L-VGCCs can incur modifications
of neuronal connectivity, influencing long-term cognitive functions [72].

It has also been suggested that L-VGCCs regulate levels of nitric oxide (NO), a gaseous
neurotransmitter implicated in synaptic plasticity [60], synaptic transmission, and neuropro-
tection [74,75]. NO acts presynaptically at both glutamatergic and GABAergic synapses to alter
vesicle release probability [76]. Pigott and colleagues [77] have suggested that calcium influx
through postsynaptic L-VGCCs provides a trigger for LTPL-VGCC and also stimulates neural NO
synthase (nNOS); a precursor form of NO that occurs in neurons.

Evidence also suggests a strong link between vitamin D and NO. Vitamin D has been found to
influence both the production of NO and expression of the enzymes responsible for its
6 Trends in Neurosciences, Month Year, Vol. xx, No. yy
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production including inducible NO synthase and nNOS [78–80]. NO has been linked to learning
and memory processes [81] and dysregulation of NO-mediated neurotransmission has been
implicated in schizophrenia [82]. Yilmaz and colleagues [83] found higher levels of NO in
patients with schizophrenia, compared with controls. Other studies have yielded similar results
[84,85], although there is dispute in the literature regarding direction of association [86]. Taken
together, it seems likely that vitamin D influences calcium related activities of L-VGCCs, via both
genomic and nongenomic actions, thereby influencing the secretion of NO. These physiological
changes may ultimately impact cognition and behaviour, particularly processes such as
learning and memory.

The impact of AVD deficiency on behaviour has been investigated in two strains of inbred mice,
C57BL/6J and BALB/c. AVD deficiency was found to result in spontaneous hyperlocomotion in
both strains [87]. The C57BL/6J strain showed no other behavioural effects of AVD deficiency.
However, the BALB/c AVD-deficient mice also showed altered behaviour on the elevated plus
maze, a test used to measure anxiety levels, as well as altered responses to heat, shock, and
sound [87]. Furthermore, male mice appeared to be more vulnerable than female mice in
response to vitamin D deficiency. For example, sex-specific effects were reported for BALB/c
AVD-deficient mice tested on the five-choice serial reaction time task (5-CSRTT), as a measure
of attention, in which male mice made more incorrect responses than female mice [88]. Male,
but not female, mice failed to learn the five-choice continuous performance task (5C-CPT) as a
measure of response inhibition. By contrast, attentional performance on the 5-CSRTT was
largely intact in a C57Bl/6 mouse model of developmental vitamin D (DVD) deficiency, sug-
gesting that DVD deficiency had little to no effect on the systems governing attention in mice
[89]. When tested on the 5C-CPT, sex-specific effects were reported for C57BL/6J DVD-
deficient mice, in which male mice made more perseverative responses than female mice [89].

Taken together, animal model studies indicate that vitamin D impacts the synaptic integrity of
the neuronal system through a plethora of avenues, and its deficiency likely results in learning
and memory deficits. The question arises, what are the players involved in mediating the effects
of vitamin D on synaptic plasticity?

Traditionally, synaptic plasticity has been thought of as the ability of the pre- and postsynaptic
elements to alter connectivity strength in response to temporally coordinated use or disuse.
However, this prevailing vision of a synapse as a bipartite entity has constrained our thinking of
synaptic function and plasticity, and its role in cognition. Among other emerging concepts in
synaptic plasticity, glia and ECM have been gaining attention as important participants of the
synaptic machinery, lending support to the concept of the tetrapartite synapse.

Tetrapartite Synapse: Emphasis on the ECM in Synaptic plasticity
The tetrapartite synapse framework suggests that synaptic functions and plasticity result from
interactions between four components: the pre and postsynaptic elements, glial processes,
and the ECM (for review, see [90]). As a particular emphasis in this framework, the ECM forms
an active component of neural functions and is heavily involved in synaptic regulation.

The ECM is a complex molecular network that surrounds all cells, occupying an approximately
20% volume fraction of the adult human brain [56]. There are two major types of ECM. First, a
looselyorganised lattice that existsubiquitously throughout thebrain and spinalcord,surrounding
the synapse, filling the synaptic cleft, and interacting with cell surface receptors (Figure 2, green
and light purple tracks). Second, the ECM also forms a unique, lattice-like structure that enwraps
specific neurons in the brain and spinal cord, called PNNs [91] (Figure 2, green mesh surrounding
Trends in Neurosciences, Month Year, Vol. xx, No. yy 7
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Figure 2. Schematic Outline Depicting How Vitamin D May Impact the Integrity of PNNs in a Disease State. A
neuron (brown) is depicted on the left, and a neuron with a PNN (green mesh) is depicted on the right. Collagen fibres
(green) and the polysaccharides (purple) represent the loosely organised ECM, which exists ubiquitously throughout the
brain and spinal cord. Vitamin D deficiency may impact the flow of calcium through L-VGCCs (depicted on the surface of
the neuron) via genomic actions, moderating the transcription of L-VGCCs, and nongenomic actions, rapidly activating
protein kinases such as CaMKII, PKA, and PI3K, which then facilitates calcium influx via L-VGCCs. These changes in
calcium likely contribute to changes in nNOS, resulting in abnormal secretion of NO into the extracellular space. This
abnormal NO secretion may increase MMP-9 levels, which are likely to impact both the ECM and aggrecan-rich PNNs,
resulting in a decrease of PNN-positive cells. This decrease may perturb the excitation-inhibition balance in neuronal
circuits, particularly through destabilising the activity of GABAergic interneurons that express parvalbumin. Ultimately this
may produce network dysfunction resulting in the presentation of cognitive deficits. Abbreviations: CaMKII, calcium/
calmodulin-dependent protein kinase II; ECM, extracellular matrix; L-VGCC, L-type voltage-gated calcium channel; MMP-
9, matrix metalloproteinase-9; NO, nitric oxide; nNOS, neural NO synthase; PNN, perineuronal net; Vit D, vitamin D.
the neuron on the right). PNNs have a distinct molecular composition formed by four families of
ECM molecules: hyaluronan (HA); chondroitin sulfate proteoglycans (CSPGs; i.e., aggrecan,
brevican, neurocan, versican, and phosphacan); tenascins; and link proteins [92]. Although their
role is still not completely understood, PNNs and their constituents, in particular HA, CSPGs, and
tenascins, have been implicated in regulating synaptic activity and LTP of excitatory transmission
[93–97]. For example, the pharmacological removal of HA in mice impairs LTP at CA3–CA1
synapses through occlusion of L-VGCCs, and impairs performance in hippocampal-dependent
contextual fear conditioning, suggesting a functional importance forPNNs in the CNS[93]. HA has
also been shown to affect both the mobility of AMPA glutamate receptors and paired-pulse
modulation in hippocampal cultures [95]. Deficiency in tenascin-R results in impaired LTP, while
reducing perisomatic GABAergic inhibition in the CA1 region [96]. Similarly, enzymatic removal of
CSPGs also reduces LTP at excitatory synapses in CA1 [97].
8 Trends in Neurosciences, Month Year, Vol. xx, No. yy
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Due to the proposed role of PNNs in regulating synaptic plasticity, studies have since examined
the contribution of PNNs in regulating cognition. In particular, a wealth of literature has
elucidated a role for PNNs in learning and memory [98–102]. While PNNs surround a variety
of cells, it has been suggested that PNNs have an affinity for parvalbumin-expressing GABAer-
gic (PV+) interneurons. It is well established that PV+ interneurons contribute to synchronous
oscillatory activity [103,104], particularly in the gamma range (30–100 Hz), and have been
shown to be involved in regulation of cognition [105–108]. Interestingly, both PNNs and PV
expression are developmentally regulated and experience dependent [109]. Furthermore, the
colocalisation of PV+ interneurons and PNNs is correlated with the closure of the critical period
[110]; a period of time when the maturation of the brain is strongly dependent on experience
and environmental influences [111]. Recent literature highlights the possibility that dysregula-
tion of PNNs can cause alterations in PV+ interneuron development and activity, as well as
cortical hyperexcitability [112]; a core pathophysiological mechanism thought to underlie
cognitive symptoms in schizophrenia [113].

PNNs in Disease
PNNs and Schizophrenia
Recent evidence suggests that PNNs are involved in the pathophysiology of schizophrenia (for
reviews, see [114,115]). Observational studies have shown in a number of human post-mortem
brain studies that there is a disease-specific reduction in the density of PNNs as well as altered
expression of genes that regulate PNNs and ECM in key brain structures associated with
schizophrenia, including the amygdala, olfactory epithelium, entorhinal cortex, superior tem-
poral cortex, and prefrontal cortex [116,117]. Pantazopoulos and colleagues [117] noted that
the numerical density of PNNs was reduced as much as tenfold in patients with schizophrenia;
however, it was unchanged in those with bipolar disorder. Furthermore, the authors revealed
abnormalities affecting CSPGs; a main component of PNNs [92]. They found increases in
CSPG-positive glial cells in the amygdala and entorhinal cortex in patients with schizophrenia,
suggesting a possible role for ECM–glial interactions in the pathophysiology of schizophrenia.
CSPGs influence neuronal migration, synaptic maturation and stabilisation, neural circuit
formation, and structural plasticity; processes that are postulated to be disrupted in schizo-
phrenia [117].

Together, these results highlight that PNN dysregulation may contribute to several aspects of
the pathophysiology of schizophrenia, including possible disrupted connectivity and neuronal
migration, synaptic anomalies, as well as altered GABAergic, glutamatergic, and dopaminergic
neurotransmission. It is likely that these changes in PNNs occur via mediated cleavage and/or
reorganisation during development.

Mechanism of PNN Dysregulation
PNN abundance is typically modulated by proteolytic processing. While animal studies often
use enzymes, notably hyaluronidase or chondroitinase ABC, to experimentally degrade PNNs
and examine behavioural and cognitive implications [118–120], in physiological settings,
modulators of PNNs include elements such as matrix metalloproteinase (MMP) and a dis-
integrin and metalloproteinase with thrombospondin motifs (ADAMTSs) [121].

These two families of endogenous, extracellular metalloproteinases are zinc-dependent pro-
teases, mostly secreted as inactive proenzymes that cleave ECM components. Although this
cleavage is part of a normal turnover process of the ECM, its dysregulation may be involved in
disease conditions. This is supported by several observations suggesting that MMPs are key
mediators of PNN degradation. Two members of this group of ECM-regulating enzymes, MMP-
Trends in Neurosciences, Month Year, Vol. xx, No. yy 9
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Outstanding Questions
Guidelines for vitamin D intake are gen-
erally based on skeletal health out-
comes. Given that vitamin D is
correlated with cognition and neuro-
psychiatric disease, what is the optimal
level of circulating vitamin D for healthy
brain function?

Is there an effective dose and duration
of vitamin D supplementation for the
treatment of cognitive symptoms?

When is the best time to supplement
with vitamin D during the lifespan for
prevention of neuropsychiatric illness?

How does serum vitamin D deficiency
influence vitamin D metabolism in the
brain?

Does vitamin D deficiency influence
PNN degradation and/or impair PNN
formation through elevated levels of
MMPs in the brain? And if so, does
this disruption occur in specific brain
regions, or is it a general phenomenon
across the brain?

If there are vulnerable brain regions in
response to vitamin D deficiency,
exhibited by PNN degradation, is this
pattern consistent with network con-
nectivity deficits seen in patients with
schizophrenia that may relate to cog-
nitive dysfunction (i.e., default mode
network)?

If vitamin D deficiency leads to PNN
degradation, does this correlate with
learning and memory deficits/facilita-
tion? And if so, can these effects be
replicated by artificial enzymes (i.e.,
chondroitinase or hyaluronase) that
degrade PNNs experimentally?
2 and MMP-24, have been shown to have direct CSPG-degrading properties in the brain
[122,123] and more PNNs are expressed in juvenile MMP-9-null mice [124]. In addition,
ADAMTS can mediate degradation of brevican [125] and it has been shown to be colocalised
with areas of synaptic loss in a kainic acid model of acute neuronal toxicity [126]. A GWAS has
identified MMP-16 as a schizophrenia risk gene [127]. Furthermore, pyramidal neurons from
layer 3 of the superior temporal gyrus of patients with schizophrenia, exhibit alterations in genes
that encode both MMPs and ADAMTSs, including MMP-16 [128]. In addition to MMP-16,
multiple studies have supported a link between MMP-9 and schizophrenia. A functional
polymorphism of the MMP-9 gene was discovered in human schizophrenia patients
[129,130]. Additionally, Yamamori et al. [131] showed elevated MMP-9 levels in the plasma
of schizophrenic patients. Peak MMP-9 expression is observed during postnatal development
and is reduced during adulthood, aligning with the typical developmental timeline of schizo-
phrenia [124]. High levels of MMP-9 contribute to proteolytic cleavage of ECM, creating an
extracellular environment permissive for synaptic plasticity. As aggrecan, a component of
PNNs, has been previously identified as an MMP-9 target [132], aggrecan-rich PNNs may be
unstable in the presence of MMP-9, leading to abnormal development and neural excitability
[124]. Well-known factors that purportedly promote schizophrenia, such as chronic stress [133]
and neurotrauma [134], enhance MMP-9 levels in the brain.

PNNs and Vitamin D: Is There a Link?
Mounting evidence indicates that deficiency of vitamin D is associated with increased MMP-9
production [135,136]. For instance, Moradi and colleagues [136] investigated the association of
serum levels of vitamin D and MMPs in patients with coronary artery disease (CAD). They found
that there was a significant inverse correlation between MMP-9 concentrations and serum
vitamin D levels in patients with CAD, such that the patients with low levels of vitamin D had high
levels of circulating MMP-9. Consist with this result, Timms et al. [137] showed that supple-
mentation of vitamin D can reduce circulating levels of MMP-9. Other evidence implicates a role
for NO in modulating MMP-9 levels [138–140]. It has been shown that NO regulates MMP-9
activity and the activity of its endogenous inhibitor, tissue inhibitor of metalloproteinase (TIMP) 1
at both the mRNA and protein levels [139]. As mentioned earlier, vitamin D is known to regulate
expression of NO [78–80]. With this in mind, along with the points discussed earlier, the
following cascade for the downstream effects of vitamin D deficiency seems plausible: vitamin
D deficiency may impact calcium activities in neurons, causing changes in NO secretion that
may increase circulating levels of MMP-9. This is likely to have remodelling effects on the ECM,
particularly on aggrecan-rich PNNs, causing synaptic anomalies and altered GABAergic,
glutamatergic, and dopaminergic neurotransmission, which are likely to result in network
dysfunction and cognitive deficits (Figure 2). In support of this hypothesis, a recent study in
BALB/c mice found that AVD deficiency was associated with impaired hippocampal-depen-
dent spatial memory, disrupted structural brain connectivity, and a reduced density of PNNs
within the hippocampus [141]. Therefore, it seems likely that vitamin D deficiency impacts
PNNs, altering hippocampal synaptic plasticity and learning and memory processes.

Concluding Remarks and Future Directions
In this review we have attempted to delineate the contribution of vitamin D to brain physiology,
and the possible mechanisms linking vitamin D deficiency to cognitive deficits, including those
observed in neuropsychiatric disorders, with a focus on schizophrenia. Evidence suggests that
vitamin D deficiency may affect synaptic plasticity, leading to a decline in cognition. An
emerging concept is that vitamin D deficiency may weaken the integrity of PNNs through
modulation of MMPs, thereby distorting neural-circuit function and ultimately impairing overall
cognitive functioning. This conceptual framework points to vitamin D deficiency as a modifiable
10 Trends in Neurosciences, Month Year, Vol. xx, No. yy
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risk factor for the development of cognitive deficits, including in the healthy elderly population
and in patients with schizophrenia. A goal for future studies would be to refine our mechanistic
understanding of the possible links between vitamin D and cognition (see Outstanding Ques-
tions). Further investigation into the links between vitamin D deficiency and cognitive distur-
bances, including those seen in schizophrenia, is pertinent to inform ways to address the
pressing need for new and effective preventive and intervention strategies.
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